Weakly Convergent Sequences in L∞

SURJIT SINGH KHURANA

In [2], Tullio Zolezzi proved that in a positive measure space (X, \mathfrak{a}, μ) , with $X \in \mathfrak{a}$ and $\mu(X) < \infty$, a weakly convergent sequence in L_{∞} is $||\cdot||_{\mathfrak{p}}$ -convergent in $L_{\mathfrak{p}}$ ($1 \leq p < \infty$). In this note we show that this result is an immediate consequence of the fact that L_{∞} satisfies the property D.P. strict ([1], p. 139). Also it easily follows from this that the result is also true for any p, with 0 .

Theorem. Let (X, \mathfrak{a}, μ) , with $X \mathfrak{e} \mathfrak{a}$ and $\mu(X) < \infty$, be a positive measure space and a sequence $f_n \to f$ weakly in L_∞ . Then $f_n \to f$ in $(L_p, ||\cdot||_p)$ (0 .

Proof. Without loss of generality we take f=0. Take $p, 1 \leq p < \infty$. The canonical mapping $(L_{\infty}, ||\cdot||_{\infty}) \to (L_p, ||\cdot||_p)$ is easily seen to be weakly compact and since L_{∞} satisfies D.P. strict, $||f_n||_p \to 0$. In particular $||f_n||_1 \to \infty$. Take q, 0 < q < 1. If $||f_n||_q \to 0$, by taking subsequences, if necessary, we can assume that $||f_n||_q \geq \eta > 0$, $\forall n$. Taking a subsequence if necessary and using the result that $||f_n||_1 \to 0$, we get $f_n \to 0$ a.e. which implies that $||f_n||_q \to 0$ a.e. Using the fact that $\{f_n\}$ are uniformly bounded in $||\cdot||_{\infty}$ (in a Banach space a weakly bounded set is norm-bounded), by dominated convergence theorem, $||f_n||_q \to 0$, a contradiction. This proves the result.

REFERENCES

- A. GROTHENDIECK, Sur les applications lineares faiblement compactes d'espaces du type C(K)
 Canad. J. Math. 5 (1953), 129-173.
- 2. Tullio Zolezzi, On weak convergence in L_{∞} , Indiana Univ. Math. J. 23 (1974), 765-766.

The University of Iowa

Date communicated: June 28, 1974