Characterization of Cⁿ-operators

SHMUEL KANTOROVITZ

Introduction & statement of results. Let A be a Banach algebra with identity, and let $C^n(\mathbb{R})$ be the topological algebra of all C^n -functions on the real line \mathbb{R} . The element $a \in A$ is of class $C^n(\mathbb{R})$ if there exists a continuous homomorphism of $C^n(\mathbb{R})$ into A which sends $\phi(t) = t$ to a. Let

$$E_n(t, a) = \sum_k (it)^k a^{k+n} / (k+n)!$$

and $v_n(a) = \sup ||\sum_t \phi(t) E_n(t, a)||$, where the sup is taken over all $\phi : \mathbb{R} \to C$ with finite support for which $||\hat{\phi}||_{\infty} \leq 1$.

Theorem 1. a is of class $C^n(\mathbf{R})$ iff $v_n(a) < \infty$. Theorem 2 characterizes $C^n(\mathbf{R})$ -operators in Hilbert space with positive characteristic measure. Theorem 3 gives a localized version of Theorem 1.

It follows from the definition of the topology on $C^n(\mathbf{R})$ that $a \in A$ is of class $C^n(\mathbf{R})$ iff there exists a closed interval Δ and a continuous homomorphism τ_{Δ} of the Banach algebra $C^n(\Delta)$ into A, which sends $\phi(t) = t$ onto a; given Δ , τ_{Δ} is unique, and is called the $C^n(\Delta)$ -operational calculus for a (cf. [6]). Any closed interval $\Delta^1 \supset \Delta$ has the same property as Δ , and therefore, given any bounded set $Q \subset \mathbf{R}$, we may assume without loss of generality that Δ is symmetric ($\Delta = -\Delta$) and contains Q. τ_{Δ} is related to the (unique) $C^n(\mathbf{R})$ -operational calculus τ by $\tau(f) = \tau_{\Delta}(f \mid \Delta)$, and we may then use the same notation τ for both.

The known characterizations of elements of class $C^n(\mathbf{R})$ were obtained by selecting dense subsets of $C^n(\Delta)$ on which τ is explicitly known (cf. [6]). However the criteria thus obtained are "non-intrinsic" in as much as Δ keeps appearing. The "intrinsic" criteria presented here generalize the known result for n=0 (cf. [5], Theorem 6). The role of the group e^{ita} is now taken by the function

$$E_n: \mathbf{R} \times A \to A$$

defined by

(1)
$$E_n(t, a) = \sum_{k=0}^{\infty} (it)^k a^{k+n} / (k+n)!.$$

Clearly E_n is continuous, and $E_0(t, a) = e^{ita}$.

119

Indiana University Mathematics Journal, ©, Vol. 25, No. 2 (1976)