Spaces of Harmonic Functions Representable by Poisson Integrals of Functions in BMO and &p,\lambda

E. B. FABES, R. L. JOHNSON, & U. NERI

Introduction. Several function spaces arise as the space of traces of solutions of a linear partial differential equation. This feature has been fully studied for "global constraints" in references [6], [10] and [11], and for "local constraints", in the sense that at least some type of pointwise limit exists almost everywhere, in [1] and [10].

In the course of proving the fundamental step in the duality of H^1 and BMO, Fefferman showed that a function f of bounded mean oscillation is the trace of the solution of $\Delta u + u_{tt} = 0$, u(x, 0) = f(x), where u satisfies

(0.1)
$$\sup_{h,x_0} h^{-n} \int_0^h \int_{|x-x_0| \le h} t |\nabla u(x,t)|^2 dt dx \le C.$$

Expanding on this result, we prove that, conversely, condition (0.1) characterizes all the harmonic functions whose traces are in BMO. Moreover, since BMO is contained in the $\mathcal{L}_{p,\lambda}$ scale of function spaces (see [7]), we study the characterization of $\mathcal{L}_{p,\lambda}$ by such a condition, and derive as a consequence a new easy proof of the Campanato-Meyers theorem. In a second paper, we will continue with the characterization problem for $\mathcal{L}_{p,\lambda}$ and consider the corresponding questions for solutions of the heat equation. Our notation is standard, following closely Stein's book [10], and Fefferman-Stein [4].

§I. The space HMO and its characterization. Given any x_0 in \mathbb{R}^n and $\delta > 0$, we denote by Q_{δ} the cube (or ball) with center at x_0 and side (resp. radius) of length δ , and we recall that a locally integrable function f is in $BMO = BMO(\mathbb{R}^n)$ if

$$||f||_* = \sup \left\{ \frac{1}{|Q_{\delta}|} \int_{Q_{\delta}} |f(x) - f_{Q_{\delta}}| dx : x_0 \in \mathbb{R}^n, \ \delta > 0 \right\} < \infty$$

where $|Q_{\delta}|$ is the Lebesgue measure of Q_{δ} , and $f_{Q_{\delta}}$ denotes the average (or mean value) of f on Q_{δ} . It is well-known that, identifying f with f + C (for any constant C), BMO is a Banach space with norm $||\cdot||_*$.