The Representation of Monotonous Processes by Exponentials

WALTER NOLL

1. Statement of results. Let \mathcal{V} be a finite-dimensional real vector space. The space $\mathrm{Lin}(\mathcal{V}, \mathcal{V}^*)$ of all linear mappings from \mathcal{V} into its dual \mathcal{V}^* can be identified with the space of all bilinear forms on \mathcal{V} . The subspace of $\mathrm{Lin}(\mathcal{V}, \mathcal{V}^*)$ corresponding to the symmetric bilinear forms on \mathcal{V} is denoted by $\mathrm{Sym}(\mathcal{V}, \mathcal{V}^*)$, and the set of positive definite elements of $\mathrm{Sym}(\mathcal{V}, \mathcal{V}^*)$ by $\mathrm{Sym}^+(\mathcal{V}, \mathcal{V}^*)$. By a deformation process for \mathcal{V} we mean a function

$$P:[0,d]\to \operatorname{Sym}^+(\mathcal{V},\mathcal{V}^*)$$

from some closed interval [0, d], $d \ge 0$, into Sym⁺(\mathbb{V} , \mathbb{V}^*). The number d is called the *duration* of the process. If $[t_1, t_2] \subset [0, d]$, we define the *segment*

$$P_{[t_1,t_2]}:[0,t_2-t_1]\to \mathrm{Sym}^+(\mathfrak{V},\mathfrak{V}^*)$$

of the process P by

$$P_{[t_1,t_2]}(t) = P(t+t_1)$$
 when $t \in [0, t_2-t_1]$.

It is a process of duration $t_2 - t_1$.

We say that the processes P_1 and P_2 are *congruent* if they have the same duration d and if there is an element A in the group $Invlin(\mathfrak{V})$ of all invertible linear transformations of \mathfrak{V} such that

$$P_1(t) = A * P_2(t) A$$
 for all $t \in [0, d]$,

where A^* ε Invlin(\mathbb{U}^*) denotes the adjoint of A. We say that a process P is *monotonous* if it is continuous and if any two segments of P of equal duration are congruent.

The main purpose of this paper is to prove the following representation theorem:

Theorem 1. A process P for \mathbb{U} , of duration d, is monotonous if and only if there exists an E in the algebra $Lin(\mathbb{U})$ of linear transformations of \mathbb{U} such that

(1)
$$P(t) = \exp(tE^*)P(0) \exp(tE) \quad \text{for all} \quad t \in [0, d].$$