L'-Isometries and Equimeasurability

WALTER RUDIN

1. Introduction.

1.1. Throughout this paper, μ and ν will be finite positive measures (on sets X and Y that will play essentially no role at all). For $0 , <math>L^p(\mu)$ and $L^p(\nu)$ will be the usual Lebesgue spaces of complex functions. We shall be concerned with linear maps A that carry some subspace M of $L^p(\mu)$ into $L^p(\nu)$, such that A1 = 1 and

(1)
$$\int_{Y} |Af|^{p} d\nu = \int_{X} |f|^{p} d\mu$$

for all $f \in M$. (Thus, by assumption, $1 \in M$.)

The main results proved here show that any such A has a very strong equimeasurability property, at least when p is not an even integer. When M is all of $L^p(\mu)$ (and $p \neq 2$) this is not a new phenomenon [5]. However, equimeasurability holds when M is any subspace of $L^p(\mu)$ which contains the constants, even a finite-dimensional one. This follows from Theorem I.

In Theorem II, M is assumed to be an algebra (with pointwise multiplication) and the principal additional conclusion is that A is then multiplicative.

The relations between Theorems I and II on the one hand, and earlier work of Frank Forelli [3], [4] and Robert Schneider [10] on the other, are discussed in Section 1.6. In Part 4, Theorem II is applied to the study of the isometries of H^p -spaces associated with polydiscs U^n and with the euclidean unit ball B_n of \mathbb{C}^n , the space of n complex variables. The most interesting result obtained there (Theorem 4.2) is the complete description of the isometries of $H^p(B_n)$ onto $H^p(B_n)$, for any $p \neq 2$, something which was previously known only for p > 2 [4]. It was the search for this theorem about $H^p(B_n)$ that led me to Theorems I and II. Some familiarity with B_n also turned out to be helpful in proving Lemma 2.5 for n > 1.

1.2. **Definition.** Suppose f_1 , \cdots , f_n are μ -measurable functions on X, g_1 , \cdots , g_n are ν -measurable functions on Y, all with values in the complex field \mathbf{C} . Put $F = (f_1, \dots, f_n)$, $G = (g_1, \dots, g_n)$. Regard the n-tuples F and G as \mathbf{C}^n -valued functions.