Positive Solutions of Convex Nonlinear Eigenvalue Problems

HERBERT AMANN & THEODORE LAETSCH

1. Introduction. Let $\Omega \subset \mathbf{R}^N$ be a bounded domain of class $C^{2+\mu}$ for some $\mu \in (0, 1)$. In this paper we study nonlinear elliptic eigenvalue problems of the form

(1)
$$Lx = \lambda F(x) \quad \text{in} \quad \Omega,$$
$$Bx = 0 \quad \text{on} \quad \partial \Omega,$$

where L is a second order strongly uniformly elliptic differential operator, B is a first order boundary operator such that the pair (L, B) satisfies the strong maximum principle and Schauder a priori estimates, and F is the Nemytskii operator of some function $\phi: \overline{\Omega} \times \mathbf{R}_+ \to \mathbf{R}_+$, that is, for every function $x: \overline{\Omega} \to \mathbf{R}$, F(x) is the function defined on $\overline{\Omega}$ by

$$F(x)(t) = \phi(t, x(t)), \qquad t \in \overline{\Omega}.$$

We suppose that for every $t \in \overline{\Omega}$, the function $\phi(t, \cdot) : \mathbb{R}_+ \to \mathbb{R}_+$ is increasing, convex, and asymptotically linear.

Problems of this type have recently been studied by Keener and Keller [6] and the authors [3; 10].

By imposing an additional hypothesis on the behaviour of $\phi(t, \xi)$ for large values of ξ and assuming that $\phi(t, 0) > 0$, Keener and Keller showed that there exists a positive number λ^* such that for every $\lambda \in (0, \lambda^*]$, problem (1) has a minimal positive solution and no solution if $\lambda > \lambda^*$. In addition there exists $\delta \in (0, \lambda^*]$ such that for every $\lambda \in (\lambda^* - \delta, \lambda^*)$, the boundary value problem (1) has at least two solutions, whereas for $\lambda = \lambda^*$, the minimal solution is the only solution.

In [3] the first author proved that this result remains true without the hypotheses that $\phi(t, \cdot)$ be increasing and convex. Moreover he showed that in the whole interval $(\lambda_{\infty}, \lambda^*)$, problem (1) has at least two solutions, where λ_{∞} is the principal eigenvalue of the "linearized equation at infinity".

In this paper it will be shown that under the hypotheses used by Keener and Keller, $(\lambda_{\infty}, \lambda^*)$ is precisely the λ -set for which the boundary value problem (1) has at least two positive solutions. In addition we shall completely charac-