Erratum: Toward a Spectral Characterization of the Set of Norm Limits of Nilpotent Operators, Vol. 24 (1975), 847-864

DOMINGO A. HERRERO

There is a mistake in the proof of Lemma 4 (The modification $M + T'' \rightarrow N + T''$, in the last three lines of that proof, can actually have a large norm, even if ||M - N|| is small) and the author was unable to obtain a fair proof of that fact. Unfortunately, this invalidates the proofs of several results along the paper, including the affirmative answer to Problem 7 of [1].

However, the following weaker version of Lemma 4 is actually true (By the good part of the proof given there).

Lemma 4'. Let $T \in \mathfrak{L}(\mathfrak{IC})$ and let $\epsilon > 0$ be given. Then there exists $T' \in \mathfrak{L}(\mathfrak{IC})$ such that $||T - T'|| < \epsilon$ and $T' \approx N + T''$, where $\sigma(T'') \subset \sigma(T)$, E(T'') = E(T), N is a diagonal operator whose diagonal entries are repeated infinitely many times, $\sigma(N) = E(N)$ is disjoint from $\sigma(T'')$ and $d_H[E(N), \partial w(T)] < \epsilon$ (d_H denotes the Hausdorff distance). Furthermore, if T is quasitriangular ($T \in Q T^*$, $T \in Q T \cap Q T^*$, resp.), then T' and T'' have the same property.

This weaker form is enough to prove

Theorem 7. $\mathfrak{L}(\mathfrak{IC})$ is the set of norm limits of operators of the form Q_1+Q_2 , where Q_1 , $Q_2 \in \mathbf{N}$.

The only modification to the proof given in [2] is this: instead of $|\lambda| \leq \operatorname{sp}(T)$, take $|\lambda| \leq \operatorname{sp}(T) + \epsilon/2$ and $\lambda \notin \sigma(L)$.

REFERENCE

- 1. P. R. Halmos, Ten problems in Hilbert space, Bull. Amer. Math. Soc. 76 (1970), 887-933.
- D. A. HERRERO, Toward a spectral characterization of the set of norm limits of nilpotent operators, Indiana Univ. Math. J. 24 (1975), 847-864.

Universidad Simón Bolívar, Caracas, Venezuela