The L² Behavior of Eigenfunction Expansions

HAROLD E. BENZINGER

1. Introduction. Let τ denote the differential expression defined, for suitable functions u, by

(1.1)
$$\tau u = u^{(2)} + p_1(x)u^{(1)} + p_0(x)u,$$

where p_1 and p_0 are, at least, of class $L^1(0, 1)$. Let M and N denote two 2×2 matrices of complex constants with at least two linearly independent columns between them, and let $\hat{u}(x)$ denote the column vector whose components are u(x) and $u^{(1)}(x)$. Let

$$(1.2) Uu = M\hat{u}(0) + N\hat{u}(1).$$

Let Δ denote the subspace of $L^2(0, 1)$ whose members u have absolutely continuous derivatives $u^{(1)}$, and such that $\tau u \in L^2(0, 1)$, Uu = 0. We assume Δ is dense in $L^2(0, 1)$. This is certainly true if p_0 and p_1 are bounded. Let L denote the linear operator defined on $L^2(0, 1)$ by

$$(1.3) Lu = \tau u, u \varepsilon \Delta.$$

Assuming that the spectrum of L is countably infinite, we are concerned with the question of the convergence, in the norm of $L^2(0, 1)$, of the expansion of an arbitrary function $f \in L^2(0, 1)$ in the series of eigenfunctions of L. We obtain the following result. Let $G(x, t, \rho)$ denote the Green's function of L, where ρ is the complex parameter. By examining the growth of $G(x, t, \rho)$ as $|\rho| \to \infty$, we obtain an integer $\nu \geq 0$. If $\nu \geq 1$, let H_{ν} denote the collection of those functions $f \in L^2(0, 1)$ such that $f^{(\nu)}$ is in $L^2(0, 1)$ and $f^{(k)}(0) = f^{(k)}(1) = 0$ for $0 \leq k \leq \nu - 1$. Let $H_0 = L^2(0, 1)$. Assume that for $|\rho|$ sufficiently large, the equation $\tau u = -\rho^2 u$ has two linearly independent solutions $u_1(x, \rho)$, $u_2(x, \rho)$ such that

$$(1.4) u_1(x, \rho) = e^{i\rho x} [\alpha_0(x) + \rho^{-1}\alpha_1(x) + \cdots + \rho^{-\nu}\alpha_{\nu}(x) + O(\rho^{-\nu-1})]$$

and similarly for u_2 , where $\alpha_i(x)$ has $\nu - j$ derivatives. Then each function j in H_{ν} can be expressed as the limit in the mean of its expansion in eigenfunctions of L.

If the coefficients p_0 , p_1 are of class $C^{\infty}[0, 1]$, and if the boundary condition (1.2) is Birkhoff regular [3; p. 56], then L is known to be a spectral operator [2; Chapter 19]. (The result in [2] is for differential expressions of arbitrary order.) Consequently each function f in $L^2(0, 1)$ has an L^2 convergent eigen-