Eigendistribution Expansions on Heisenberg Groups

LINDA PREISS ROTHSCHILD & JOSEPH A. WOLF

§1. Introduction. Let N be a connected, simply connected nilpotent Lie group. N acts on the space $C_c^{\circ}(N)$ of compactly supported C° functions by $f^{\sigma}(x) = f(g^{-1}xg)$ for $x, g \in N$. A distribution Θ on N is called invariant if $\Theta(f^{\sigma}) = \Theta(f)$ for all $f \in C_c^{\circ}(N)$ and $g \in N$. For any irreducible unitary representation π of N, the operator

$$\pi(f) = \int_{N} \pi(x) f(x) \ dx, \qquad f \in C_{c}^{\infty}(N)$$

is of trace class, and the map $f \to \operatorname{trace} \pi(f)$ is an invariant distribution Θ_{π} called the *global character* of π [1]. Furthermore, Θ_{π} is tempered; *i.e.* Θ_{π} extends to the Schwartz space S(N), defined by the exponential map identification of N with Euclidean space. Hence there is a natural class of invariant tempered distributions on N.

In this paper we consider the converse question: can an arbitrary tempered invariant distribution on N be expanded in terms of characters of irreducible unitary representations? We give an affirmative answer in the case where N is locally isomorphic to a product of Heisenberg groups.

To illustrate the type of result obtained, let N be the 3-dimensional Heisenberg group with Lie algebra $\mathfrak n$ spanned by x, y, t, such that [x, y] = t. Let x^*, y^*, t^* be a corresponding basis for $\mathfrak n^*$, the real dual space of $\mathfrak n$, so that (x, y, t) is the linear coordinate on $\mathfrak n^*$. For $f \in S(N)$ let $\tilde f$ denote Euclidean Fourier transform of f. Then any infinite dimensional irreducible unitary representation of N has global character Θ_* given by

$$\Theta_s(f) = \frac{1}{2} |s|^{-1} \iint \tilde{f}(x, y, s) dx dy$$

for some $s \in \mathbb{R}$, $s \neq 0$. (See §3 for more details.) Any finite dimensional irreducible unitary representation is one dimensional with global character of the form

$$\Theta_{x,y}(f) = \tilde{f}(x, y, 0)$$

for some $(x, y) \in \mathbb{R}^2$. Then for any $f \in S(N)$, $|s| \Theta_s(f) \in S(\mathbb{R})$ and $\Theta_{x,y}(f) \in S(\mathbb{R}^2)$.

Indiana University Mathematics Journal, ©, Vol. 25, No. 8 (1976)