The Commutant of a Class of Analytic Toeplitz Operators II

JAMES E. THOMSON

In this paper we characterize the commutants of certain analytic Toeplitz operators in terms of the well-known commutants of unilateral shifts. This is a continuation of the investigation begun in [10], [11], and we refer the reader to those papers for notation, terminology, and historical background of the problem. The problem under consideration is finding the most general φ for which the commutant $\{T_{\varphi}\}'$ of the analytic Toeplitz operator T_{φ} is equal to $\{T_B\}'$ for some inner function B of which φ is a function. An example of Abrahamse [12] shows that some assumption on φ is necessary. The main result of [10] is that φ analytic in \bar{D} is a sufficient condition.

Theorem. Let φ be in H^{∞} and suppose that the inner part of $\varphi - \varphi(\lambda)$ is a finite Blaschke product for uncountably many λ in D. Then there exist an H^{∞} function ψ and a finite Blaschke product B such that $\varphi(z) = \psi(B(z))$ and $\{T_{\varphi}\}' = \{T_{B}\}'$.

Because of the length of the proof of the theorem, we place it at the end of the paper.

Corollary 1. Let φ be in H^{∞} . Then $\{T_{\varphi}\}' = \{T_{B}\}'$ where B is a finite Blaschke product of which φ is a function, if either of the following hold:

- (a) The function φ is p-valent for some positive integer p.
- (b) The function φ extends continuously to \bar{D} , and there exists λ in D such that $\varphi(\lambda) \notin \varphi(\partial D)$. In particular, the latter condition holds if $\varphi(\partial D)$ has planar measure zero.
- **Proof.** (a) Let q(z) be the number of points in $\varphi^{-1}(\varphi(z))$, and let M be the open subset of D on which q attains its maximum. If $z \in M$, then $\varphi \varphi(z)$ is bounded away from zero near ∂D , and thus the inner part of $\varphi \varphi(z)$ is a finite Blaschke product. Applying the theorem, we obtain the desired conclusion.
- (b) If $\varphi(\lambda) \notin \varphi(\partial D)$, then $\varphi(z) \notin \varphi(\partial D)$ for every z in some neighborhood N of λ . Thus the inner part of $\varphi \varphi(z)$ is a finite Blaschke product for every z in N, and the theorem implies the desired conclusion.

The set of functions in H^{∞} that extend continuously to \bar{D} is called the disk