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I. In the present article we shall show that the Daniell construction of the
extension of an integral is valid also for the case of an H*-algebra valued positive
linear mapping. For the case when the domain of this mapping consists of the
class of continuous functions it produces a generalization of Riesz’s theorem
together with the implication that in this case each positive linear mapping
into a trace class is positive definite. The author finds this fact rather remark-
able. It seems that an H*-algebra is a natural object to use (instead of the
complex field) in trying to generalize classical theories.

Wright in [10] considered a positive linear mapping into a partially ordered
linear space, satisfying a certain condition, which is also valid for H*-algebras
(see Corollary 2 to Lemma 1 below), and obtained a generalization of Riesz’s
theorem. However, the derived measure there does not have to be regular
and the paper [10] does not go beyond the case of continuous functions. In this
paper we shall consider an integral defined on a general vector lattice, and the
derived measure is regular for the case of topological spaces.

It is appropriate here to mention also a work by I. Kluvanek [4]. His integral
is defined on a vector lattice of functions and its range is a subset of a general
(unordered) Banach space. The results in [4] are rather interesting but could
not really be considered as a generalization of Daniell theory. He also has a
generalization of Riesz’ theorem for the case of continuous functions (under
certain additional assumptions about the integral).

II. We first establish some general lemmas. Let A be a proper H*-algebra [1]
with (, ) denoting the scalar product and let 7A = {xy | x, y ¢ A} be its trace-
class [8]. There is a natural partial ordering < on both A and 74 : 0 < z if and
only if 0 = (za,a) forallae A and z < y if (za, a) < (ya, a) forallae 4.
One defines the upper and lower bounds of a subset of A in the usual way;
also, it makes sense to talk about lub and glb of a subset E of rA. For example,

a = lub E if a is an upper bound of E and a £ a’ if a’ is any other upper bound
of E.
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