A Differential Fundamental Theorem of Algebra

ROBERT W. WEST

§1. Introduction. In order to state our main result, we need some terminology. Let M be a (real) manifold of class C^r , $r \ge 0$, and let $A \subset M$ be any subset. By a monic polynomial function on A of degree n and class C^r we mean a function $F: A \to \mathbf{C}[t]$, t an indeterminant, of the form

$$F(x) = f(t, x) = t^{n} + a_{1}(x)t^{n-1} + \cdots + a_{n}(x)$$

where $a_i:A\to \mathbb{C} \equiv \mathbb{R}^2$ is a map of class C^r , $i=1,\cdots,n$. (If A is not open, this means that each a_i extends to a C^r map on some open neighborhood of A in M.) We use the capital letter F to draw attention to the function, and its counterpart f is used when we need to do something with the indeterminant f. A function f is a root function of f if f is a root of f if f is a root of f if f is a root of f if f if f if f is a root of f if f if f if f if f if f is a root of f if f if f if f if f if f is a root of f if f if f if f is a root of f if f if f if f if f if f if f is a root of f if f if

Our main result is the following Differentiable Fundamental Theorem of Algebra:

- (1.1) Theorem. Let M be a differentiable manifold of class C^r , $r \ge 1$, and let $F: M \to \mathbf{C}[t]$ be a monic polynomial function of degree $n \ge 1$ and class C^r . Let B be the set of points $x \in M$ for which the polynomial F(x) has multiple roots, and assume that
- (i) if dim M > 1, then B is a closed discrete subset of M and M B is simply connected;
- (ii) if dim M=1, then B is finite and M is simply connected. Then there exist continuous root functions $r_i: M \to \mathbb{C}$, $1 \le i \le n$, such that

$$f(t, x) = (t - r_1(x))(t - r_2(x)) \cdot \cdot \cdot (t - r_n(x)) \epsilon \mathbf{C}[t]$$

for all $x \in M$. Moreover, if $r_i(x)$ is a simple root of F(x), then r_i is of class C^r at point x. In particular, r_i is of class C^r on M - B.

Note that B may be empty in the theorem.

The following examples give some insight into the technical aspects of the above theorem.

(1.2) Example. Let S^1 consist of complex numbers $z = e^{i\alpha}$, $\alpha \in \mathbb{R}$, and set