Elementary Critical Point Theory and Perturbations of Elliptic Boundary Value Problems at Resonance

S. AHMAD, A. C. LAZER & J. L. PAUL

1. Introduction and summary. Basic references for the standard notation and terminology used in this section are [1] and [5].

Let Ω be a bounded domain in \mathbb{R}^n $(n \geq 1)$ and suppose

$$Lu = \sum_{\substack{|\alpha| \le 1 \\ |\beta| \le 1}} (-1)^{|\alpha|} D^{\alpha} a_{\alpha\beta} D^{\beta} u$$

is a uniformly elliptic, formally self adjoint second order operator defined on Ω with real coefficients $a_{\alpha\beta} = a_{\beta\alpha} \, \epsilon \, L^{\infty}(\Omega)$. Let $f: \mathbf{R} \times \bar{\Omega} \to \mathbf{R}$ be continuous and bounded. We are concerned with the existence of weak solutions of the problem

(1)
$$(Lu)(x) = f(u(x), x) \qquad x \in \Omega$$

$$u(x) = 0 \qquad x \in \partial\Omega.$$

If the linear homogeneous problem

(2)
$$(Lu)(x) = 0$$
 on $x \in \Omega$, $u(x) = 0$ $x \in \partial \Omega$

has only the trivial weak solution, then the solvability of (1) follows from a straight-forward application of Schauder-Leray theory. The interesting case, therefore, is when the problem (2) has nontrivial solutions (the resonance case).

Before stating our main results we make the notion of a weak solution of the nonlinear problem more precise.

Let \mathring{H}_1 denote the usual real Sololev space formed by completion of the real inner product space of C^1 functions with compact support contained in Ω and inner product

(3)
$$\langle u, v \rangle_1 = \langle u, v \rangle_0 + \sum_{|\alpha|=1} \langle D^{\alpha} u, D^{\alpha} v \rangle_0$$

where $\langle \ \rangle_0$ is the usual real $L^2(\Omega)$ inner product. Let

(4)
$$B(u,v) = \sum_{\substack{|\alpha| \le 1 \\ |\beta| \le 1}} \langle a_{\alpha\beta} D^{\alpha} u, D^{\beta} v \rangle_0$$

933

Indiana University Mathematics Journal, @, Vol. 25, No. 10 (1976)