Banach Algebras of Conservative Hausdorff Matrices

N. K. SHARMA

Introduction and notations.

Let c denote the Banach space of all complex or real convergent sequences and let c_0 denote the subspace of c consisting of all null sequences. Let B(c) denote the usual Banach space of all bounded linear operators on c. Let BV[0, 1] denote the Banach space of functions of bounded variation over [0, 1] with the usual norm such that if θ is in BV[0, 1], then $\theta(0) = 0$ and $\theta(t + 0) = \theta(t)$ for t in (0, 1). C[0, 1] denotes the Banach space of the continuous functions on [0, 1] with the sup norm. For θ in BV[0, 1], let H_{θ} denote the Hausdorff matrix $\{h_{nk}\}$ where $h_{nk} = 0$ for n < k and

$$h_{nk} = \binom{n}{k} \int_0^1 t^k (1 - t)^{n-k} d\theta$$

for $0 \le k \le n, n = 0, 1, 2, 3, \cdots$.

It is well known that H_{θ} is in B(c). For more information about Hausdorff matrices and conservative matrices the reader might find [1] a useful reference. Let $\mathfrak{X} = \{H_{\theta} : \theta \text{ is in } BV[0, 1]\}$ and $\mathfrak{A} = \{H_{\theta} : \theta \text{ is absolutely continuous in } [0, 1]\}$. \mathfrak{X} is known to be a closed subspace of B(c). Let M denote the Cesaro method of order one. It is well known that if $\theta(t) = t$, then $H_{\theta} = M$. Thus M is in \mathfrak{A} . For any Banach space X, let X^* denote the usual Banach dual of X.

In this paper we show that \mathfrak{C} can be identified with BV[0, 1] and \mathfrak{A} with $L^1[0, 1]$, the Banach space of the absolutely integrable functions in [0, 1]. It is well known that $\{C[0, 1]\}^*$ is isomorphic to BV[0, 1]. Consequently \mathfrak{K} can be identified with $\{C[0, 1]\}^*$ and as such \mathfrak{K} can be endowed with the usual weak operator topology and the weak* topology. We show that \mathfrak{A} is weak* dense in \mathfrak{K} . We also show that \mathfrak{A} is dense in weak operator topology in \mathfrak{K} and that it is not dense in the strong operator topology.

Remark 1. It is proved in [5, Theorem 4] that \mathfrak{A} equals the norm closure of the polynomials in M. The closure of \mathfrak{A} in the weak operator topology certainly contains the commutant of M. In view of Corollary 2 of [3], it follows that the commutant of M in Γ , the Banach space of all conservative matrices, is equal