Perturbation of the Laplacian by Coulomb Like Potentials

J. C. GUILLOT

In memory of J. M. Jauch

1. Introduction. This paper is concerned with the scattering and spectral theory for the Schrödinger operator

(1.1)
$$L = -\Delta + \frac{1}{i} \sum_{j=1}^{n} a_j(x) \frac{\partial}{\partial x_j} - \frac{\alpha}{|x|} + q(x)$$

in \mathbf{R}^n ($n \geq 3$, odd n) with $\alpha \in \mathbf{R}$ and where q(x) and $a_i(x)$ are appropriate short-range perturbations of the Coulomb potential $\alpha/|x|$. More precisely we suppose that the following conditions hold:

- (1.2) The real-valued functions $a_i(\cdot)$ are continuously differentiable in \mathbf{R}^n and $(1+|x|)^a a_i(x) \in L^{p_i}(\mathbf{R}^n)$ with a > n/2 and $n < p_i < 2n$.
- (1.3) The complex-valued function $q(\cdot)$ is a measurable function defined a.e. in \mathbb{R}^n and we suppose that the function Q(x) defined though $q(x) = (1 + |x|)^{-a}Q(x)$ is expressible as a sum $Q = Q_1 + Q_2$ of $Q_1 \in L^{a_1}(\mathbb{R}^n)$ and $Q_2 \in L^{a_2}(\mathbb{R}^n)$ where each of $q_i(i = 1, 2)$ satisfies $n/2 < q_i < 2n$ and $2 \le q_i$.
- (1.4) L is a formally selfadjoint operator.

In the physical case, the differential operator L represents the energy operator of an electron in an exterior electromagnetic field, interacting with a fixed source through the Coulomb potential $\alpha/|x|$ and a short range one.

When $\alpha=0$, the scattering and spectral theory of the operator L has recently been brought into very satisfactory condition. The most recent and general results in this direction have been obtained by S. Agmon [1], S. T. Kuroda [2] and M. Schechter [3a, b]. Moreover, when q(x) and $a_i(x)$ are long range perturbations, T. Ikebe and Y. Saito [4] and R. Lavine [5] (in the case $a_i(\cdot)=0$) have got a very general result concerning the spectrum of the operator L (see also J. Aguilar and J. M. Combes [6], P. A. Rejto [7] and J. Weidmann [8]). Existence of generalized wave operators has been shown by J. Dollard [9], W. Amrein, P. Martin and B. Misra [10], V. S. Buslaev and V. B. Matveev [11] P. Alshom and T. Kato [12], and K. Zizi ([13], [33]) (see also R. Lavine [5]).