Self Linking Numbers of Space Polygons

T. BANCHOFF

If a smooth closed space curve with nowhere vanishing curvature is pushed
a small distance away from itself along its principal normal vectors to a new
curve X, then the linking number of X with X is independent of ¢ for e suffi-
ciently small and this number is called the self-linking number of X. This
notion was first studied by Céalugdreanu [3] using classical analytic techniques,
and subsequently by Pohl [5] who used methods involving differential forms to
establish a large number of properties of this self-linking number.

The purpose of this paper is to develop the theory of self-linking for polygons
in 3-space in all of its ramifications. The proofs primarily rest upon a basic
projection theorem which makes it possible to compute self-linking numbers
simply and effectively by projecting to a plane and totalling numbers of apparent
crossings and (signed) pairs of apparent inflection points.

The first section proves the basic theorem by deformation methods similar to
those of [1]. Section 2 treats linking numbers of pairs of polygons in the same
gpirit and obtains a finite form of the Gauss iniegral. In section 3, we obtain
integral formulas for the self-linking number of a polygon including a polygonal
analogue of theorems involving total torsion of closed curves. Section 4 presents
the connection with the definitions of Cilugireanu and Pohl in terms of normal
variations and intersections with developable surfaces associated with the curve.
Section 5 treats the behavior of self-linking under deformations, and the final
section indicates how these concepts can be generalized to higher dimensional
polyhedra.
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1. Definition of the self-linking number for a space polygon. Let X =
(Xo, X, , -+, X,._1) be a space polygon determined by a cycle of vertices
in general position. We set T, = (X,,, — X.)/|X:.1, — Xi|| , the unit tangent
vector in the direction of the ¢th edge (where all subscripts are to be reduced
modulo m). Set B, = (T;-, X T))/||T:-. X T.|| , the unit binormal vector to
the oriented plane containing both edges of X at X, .

The vectors B; and B, ,, are orthogonal to T; so B; X B;,, is a multiple of T'; .
We set f,(X) = =1 depending on the sign of B, X B;,,- T, , indicating whether
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