Solutions in the Large for the Equations of
Nonisentropic Gas Dynamics

TAI-PING LIU

1. Introduction. We consider the nonisentropic gas equations in Lagrangian
coordinates (see, e.g. [1])
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wheret 2 0, —» <2 < »,andu,v > 0, p > 0, ¢, s > 0 are the velocity,
specific volume, pressure, internal energy and entropy, E = u’/2 + e is the
total energy and p = 1/v the density.

The problem to be solved is the Cauchy problem (1.1) with initial data

(1.2) (u(x,0),v(z,0), E(x,0)) = (uo(2),v(x), Bo(2)), —o <z< .

We seek the weak solution (u, v, E)(z, t) of (1.1) & (1.2), i.e. (u, v, E)(z, ?)
satisfies the integral equations
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j]m (vg, — ug,) dx dt + [t_o vo(2)g(x, 0) dz = 0,

ff,>0 (Bh, + puh,) dz dt + f‘ =0Eo(x)h(x, 0) dz = 0,

for all smooth functions f, g and h with compact supports.
Our existence theorem is proved under the assumption that the gas is poly-
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