On Fractional Integrals and Derivatives in L^p

RHONDA J. HUGHES

The purpose of this note is to show that the Riemann-Liouville fractional integral acting in $L^p(0, \infty)$, $1 , satisfies a certain inequality which yields information about the domains of fractional integrals and derivatives as unbounded operators in <math>L^p(0, \infty)$.

In [4], Hardy, Landau and Littlewood proved that for certain real-valued functions f in $L^{p}(0, \infty)$, 1 , the Weyl fractional integral

$$J^{\alpha}f(x) = \frac{1}{\Gamma(\alpha)} \int_{x}^{\infty} (t-x)^{\alpha-1} f(t) dt, \qquad \alpha > 0,$$

satisfies the inequality

$$(1.1) \quad ||J^{\beta}f|| \leq K \, ||J^{\alpha}f||^{(\gamma-\beta)/(\gamma-\alpha)} \, ||J^{\gamma}f||^{(\beta-\alpha)/(\gamma-\alpha)}, \quad -L' < \alpha < \beta < \gamma < L,$$

where K = K(p, L, L') and $||\cdot||$ denotes the norm in $L^p(0, \infty)$ (if n is a positive integer, $J^{\alpha-n}f(x) = (-1)^n(d/dx)^nJ^{\alpha}f(x)$, and $J^0f(x) = f(x)$); those functions f for which (1.1) is proved belong to the set $D(J^{\alpha}) = \{f \, \varepsilon \, L^p(0, \infty) : J^{\alpha}f \, \varepsilon \, L^p(0, \infty) \}$ for each α real.

Now for $f \in L^p(0, \infty)$, $\alpha \in \mathbb{C}$ (the complex numbers) with Re $\alpha > 0$, let

$$I^{\alpha}f(x) = \frac{1}{\Gamma(\alpha)} \int_0^x (x - t)^{\alpha - 1} f(t) dt,$$

the Riemann-Liouville fractional integral acting in $L^{p}(0, \infty)$ with maximal domain $D(I^{\alpha}) = \{f \in L^{p}(0, \infty) : I^{\alpha}f \in L^{p}(0, \infty)\}$. In Theorem 3.3 of [5] it was shown that as unbounded operators in $L^{p}(0, \infty)$,

(1.2)
$$I^{\alpha}I^{\beta} = I^{\alpha+\beta}$$
, $\alpha, \beta \in \mathbb{C}$, Re $\alpha > 0$, Re $\beta > 0$.

The crucial result is the following:

If $f \in L^p(0, \infty)$, and $I^{\beta} f \in L^p(0, \infty)$, where $\operatorname{Re} \beta > 0$, then $I^{\alpha} f \in L^p(0, \infty)$ whenever $0 < \operatorname{Re} \alpha < \operatorname{Re} \beta$.

For α , β real this was proved by Berens and Westphal [1, Proposition 6] in the context of derivatives of fractional order in $L^p(0, \infty)$ (defined as inverses of the 1-1 operators I^{α}); the general result follows from some results of Fisher [3] about "boundary values" of the Riemann-Liouville fractional integral in