Spectra of Compact Perturbations of Operators

C. APOSTOL, C. PEARCY & N. SALINAS

Let \mathfrak{K} be a separable, infinite dimensional, complex Hilbert space, and let $\mathfrak{L}(\mathfrak{K})$ denote the algebra of all bounded linear operators on \mathfrak{K} . The (norm-closed, two-sided) ideal of compact operators in $\mathfrak{L}(\mathfrak{K})$ will be denoted by $\mathfrak{K}(\mathfrak{K})$, and the canonical quotient map of $\mathfrak{L}(\mathfrak{K})$ onto the Calkin algebra $\mathfrak{L}(\mathfrak{K})/\mathfrak{K}(\mathfrak{K})$ by π . The spectrum of an operator T in $\mathfrak{L}(\mathfrak{K})$ will be denoted by $\sigma(T)$, and the [left, right] essential spectrum of T (i.e., the [left, right] spectrum of $\pi(T)$) by $[\sigma_{le}(T), \sigma_{re}(T)]\sigma_{e}(T)$. Recall that the Weyl spectrum of T, denoted by $\sigma_{\omega}(T)$, is the union of $\sigma_{e}(T)$ and all holes Γ in $\sigma_{e}(T)$ whose associated Fredholm index $i(\Gamma)$ is nonzero.

The purpose of this note is to answer completely the following question: if T is an arbitrary operator in $\mathfrak{L}(\mathfrak{K})$, exactly which (nonempty, compact) subsets Σ of the complex plane \mathbf{C} have the property that there exists a compact operator $K = K(\Sigma)$ in $\mathfrak{K}(\mathfrak{K})$ such that $\sigma(T + K) = \Sigma$? The following facts bearing on this problem are well-known.

Proposition 1. (cf. [7, Prop. 1.27]). If $T \in \mathfrak{L}(\mathfrak{R})$, $K \in \mathfrak{K}(\mathfrak{R})$, and $\sigma(T + K)$ is denoted by Σ , then

- a) $\Sigma \supset \sigma_{\omega}(T)$,
- b) the intersection of Σ and the unbounded component of $\mathbb{C}\backslash\sigma_{\epsilon}(T)$ is a countable (perhaps void) set of isolated points, and
- c) if Γ is a hole in $\sigma_{\bullet}(T)$ such that $i(\Gamma) = 0$, then either $\Sigma \supset \Gamma$ or $\Sigma \cap \Gamma$ is a countable (perhaps void) set of isolated points.

Proposition 2. (Stampfli [8]). If $T \in \mathfrak{L}(\mathfrak{R})$, then there exists a compact operator K in $\mathfrak{K}(\mathfrak{R})$ such that $\sigma(T+K) = \sigma_{\omega}(T)$.

Proposition 1 clearly delineates what must be settled to solve the problem posed above: if $T \in \mathcal{L}(\mathcal{K})$, then which compact sets Σ satisfying a), b), and c) of Proposition 1 have the property that there exists a K in $\mathcal{K}(\mathcal{K})$ such that $\sigma(T + K) = \Sigma$? The answer is perhaps mildly surprising.

Theorem 1. Let $T \in \mathfrak{L}(\mathfrak{IC})$ and let Σ be any compact subset of \mathbb{C} satisfying a), b), and c) of Proposition 1. Then there exists a compact operator $K = K(\Sigma)$ in $\mathfrak{K}(\mathfrak{IC})$ such that $\sigma(T + K) = \Sigma$.