Nuclear C*-algebras and Injectivity: The General Case

MAN-DUEN CHOI & EDWARD G. EFFROS

In a previous article [3], the authors used Connes' fundamental paper "Classification of injective factors" [4] to prove that a separable C^* -algebra A is nuclear if and only if the enveloping von Neumann algebra A^{**} is injective (see definition below). In this note we will prove that the corresponding result for general C^* -algebras follows from the separable case. As a consequence, we show that quotients and extensions of arbitrary nuclear C^* -algebras must again be nuclear.

Given a Hilbert space H, we let $\mathfrak{B}(H)$ be the bounded linear operators on H. An operator system N on H is a self-adjoint linear subspace of $\mathfrak{B}(H)$ that contains the identity operator 1. We denote its self-adjoint elements by N_h . If $n=\dim H<\infty$, $\mathfrak{B}(H)$ may be identified with the $n\times n$ matrices M_n , and we then say that N is a matrix system. A von Neumann algebra R is injective if given operator systems $N_1\subseteq N_2\subseteq \mathfrak{B}(H)$, any completely positive map $\varphi:N_1\to R$ extends to a completely positive map $\psi:N_2\to R$.

For integers n, k with $0 \le k$, n, we define the matrix system $N_{n,k} \subseteq M_{2n+k}$ to be the hyperplane

$$N_{n,k} \, = \, \{ \alpha \, \mathbf{\epsilon} \, \, M_{2n+k} \, : \, \sum_{i \, \leq \, n} \, \alpha_{i\,i} \, = \, \sum_{i \, > \, n+k} \, \alpha_{i\,i} \, \} \, .$$

We will need the following refinement of [1, Th. 3.4]. We note that it can be shown that one need only consider the spaces $N_{n,0}$.

Lemma 1. If R is a von Neumann algebra, then the following are equivalent:

- (1) R is injective.
- (2) For all n, k with $0 \le k, n,$ any completely positive map $\varphi : N_{n,k} \to R$ may be extended to M_{2n+k} .

Proof. (1) \Rightarrow (2) is immediate. Conversely let us assume that $R \subseteq \mathfrak{B}(H)$ satisfies (2). We recall from [1, Th. 3.4] that R is injective if and only if it has the following "relative interpolation property" (we use the convenient notation of Connes [4]): given $\sigma \varepsilon (M_m)_h$ and $s \varepsilon M_m(R)_h$, if there exists an element $b \varepsilon \mathfrak{B}(H)_h$ with $\sigma \otimes b = [\sigma_{ij}b] \leq s$, then there exists an element $r \varepsilon R_h$ with $\sigma \otimes r = [\sigma_{ij}r] \leq s$.