Products of Dilatations

DRAGOMIR Z. DJOKOVIC

Let V be a right vector space over a division ring F. An invertible linear transformation $A: V \to V$ is called a dilatation if there exists a direct decomposition $V = H \oplus L$ into A-invariant subspaces such that the restriction of A to H is the identity map, the restriction of H to H is not the identity and dim H = 1. This definition is equivalent to the definition of dilatations in [1, p. 3-4]. The subspaces H and H are uniquely determined by H and we shall write H = H and H when we wish to indicate this dependence. Note that the inverse of a dilatation is also a dilatation.

When dim V=n is finite we shall identify Aut (V) with $GL_n(F)$. In that case an invertible matrix A is a dilatation if it is similar over $GL_n(F)$ to a diagonal matrix whose diagonal entries are 1, 1, \cdots , 1, λ where $\lambda \neq 1$. If dim $V \geq 1$ and if F has at least 3 elements then Aut (V) contains dilatations. If F is the field of two elements then there are no dilatations. Our objective is to prove the following

Theorem. If F has at least four elements then every $A \in GL_n(F)$ is a product of at most n dilatations and this bound is best possible.

Proof. We shall proceed by induction on n. If n = 0 or 1 the assertion is obvious.

Case n=2. If A is diagonalizable the assertion is trivial. Otherwise we may assume that A is in the canonical form

$$A = \begin{pmatrix} 0 & \alpha \\ 1 & \beta \end{pmatrix}.$$

Since F has at least four elements we can choose $\lambda \in F$ distinct from 0, 1, $-\alpha^{-1}$. Let

$$\mu = (1 - \beta)\alpha^{-1} - \lambda.$$

We have

$$\begin{pmatrix} \lambda & 0 \\ \mu & 1 \end{pmatrix} A = \begin{pmatrix} \lambda & 0 \\ \mu & 1 \end{pmatrix} \begin{pmatrix} 0 & \alpha \\ 1 & \beta \end{pmatrix} = \begin{pmatrix} 0 & \lambda \alpha \\ 1 & \mu \alpha + \beta \end{pmatrix},$$

Indiana University Mathematics Journal ©, Vol. 26, No. 3 (1977)