Fredholm Properties of a Class of Toeplitz Operators on the Ball

GERARD McDONALD

1. Introduction. Let B denote the unit ball in \mathbb{C}^n ,

$$B = \{ \zeta = (\zeta_1, \dots, \zeta_n) \in \mathbb{C}^n : |\zeta| < 1, |\zeta|^2 = |\zeta_1|^2 + \dots + |\zeta_n|^2 \},$$

and $L^2(B)$ the space of square-integrable functions on B. (We will consider only the usual Lebesgue measures on B and the unit sphere S. Henceforth n will refer to, or be equal to, the complex dimension of B.) The collection of square-integrable holomorphic functions on B, $H^2(B)$, forms a closed subspace of $L^2(B)$. The orthogonal projection of $L^2(B)$ onto $H^2(B)$ will be written P. The algebra of bounded linear operators on $H^2(B)$ and its norm closed ideal of compact operators will be denoted, respectively, by $\mathfrak{L}(H^2(B))$ and \mathfrak{K} . For φ in $L^\infty(B)$, the Toeplitz operator with symbol φ , T_φ , is defined by

$$T_{\varphi}f = P(\varphi f), \qquad f \in H^2(B).$$

If S is a subset of $L^{\infty}(B)$, the closed subalgebra of $\mathfrak{L}(H^2(B))$ generated by $\{T_{\varphi}: \varphi \in S\}$ will be written $\mathfrak{I}(S)$.

Denote the space of bounded holomorphic functions on B by $H^*(B)$. For f in $H^*(B)$ and almost every ζ on S the limit

$$f^*(\zeta) = \lim_{r \to 1} f(r\zeta)$$

exists. The map $f \to f^*$ is an isometric isomorphism onto the closed subalgebra of $L^{\infty}(S)$, $H^{\infty}(S)$. The spaces

$$H^{\infty}(B) + C(\overline{B}) = \{f + g : f \in H^{\infty}(B), g \in C(\overline{B})\}$$

and

$$H^{\infty}(S) + C(S) = \{f + g : f \in H^{\infty}(S), g \in C(S)\}$$

are closed subalgebras of $L^{\infty}(B)$ and $L^{\infty}(S)$, respectively [7]. The map $\varphi \to \varphi^*$, $\varphi^*(\zeta) = \lim_{r \to 1} \varphi(r\zeta)$, is an algebra homomorphism of $H^{\infty}(B) + C(\overline{B})$ onto $H^{\infty}(S) + C(S)$.

Toeplitz operators with continuous symbol have been studied by Venugo-palkrishna [9] and Coburn [1]. The following theorem can be found in [1].