Smoothness of Bessel Potentials and Lipschitz Functions

C. J. NEUGEBAUER

In this paper we wish to extend these results to fractional differences

$$\Delta_h^{\alpha}f(x) = \sum_{j=0}^{\infty} (-1)^j \binom{\alpha}{j} f(x-jh), \qquad \alpha > 0,$$

and study the smoothness condition $\Delta_h^{\alpha} f(x) = 0(|h|^{\beta})$, $\alpha > \beta$, for Bessel potential functions, or, more generally, Lipschitz functions. There are interesting relations between $\Delta_h^{\alpha} f$ and the fractional derivative of order α , and for this the reader is referred to a paper by Butzer and Westphal [2].

2. For a general reference for the Bessel potential space $L_{\alpha}^{\ p}(\mathbf{R}^n)$ and the Lipschitz space $\wedge_{\alpha}^{\ pq}(\mathbf{R}^n)$ the reader should consult [7] or [8]. For $\alpha > 0$, $L_{\alpha}^{\ p}$ is the Banach space of all functions f such that $f = G_{\alpha}^{\ *}g$, $g \in L^p$, where $G_{\alpha}(x) = (1 + 4\pi^2 |x|^2)^{-\alpha/2}$ with $||f||_{L_{\alpha}^{\ p}} = ||g||_p$. Associated with $L_{\alpha}^{\ p}$ is the Bessel capacity $B_{\alpha p}$ which is defined for $E \subset \mathbf{R}^n$ by

$$B_{\alpha p}(E) = \inf \{ ||g||_p^p : g \in L^p, g \ge 0, \qquad G_{\alpha}^* g \ge 1 \quad \text{on} \quad E \}.$$

Sets of $B_{\alpha p}$ -capacity zero refine sets of Lebesgue measure zero; in fact, if p > 1, $\alpha p < n$, then $B_{\alpha p}(E) = 0$ implies that $H^{n-\alpha p+\epsilon}(E) = 0$ for every $\epsilon > 0$, where H' is Hausdorff measure of dimension r [5].