A Method for Computing Non-parameteric Area Minimizing Surfaces over n Dimensional Domains, Together with a priori Error Estimates

HAROLD R. PARKS

0. Introduction. This paper treats the problem of determining, computationally, a non-parametric minimal surface with given boundary values. In particular we work under the following hypotheses: $\Omega \subset \mathbb{R}^n (n \geq 2)$ is non-empty, bounded, open, and convex and $u: \operatorname{Bdry}(\Omega) \to \mathbb{R}$ satisfies the bounded slope condition with constant M. Denote by $U: \operatorname{Clos}(\Omega) \to \mathbb{R}$ the continuous function the graph of which minimizes \mathfrak{R}^n measure subject to agreeing with u on $\operatorname{Bdry}(\Omega)$. We show how, for each $\delta > 0$ and $\epsilon > 0$, to obtain a function F, piecewise linear over a triangulation of \mathbb{R}^n into pieces congruent to

$$\{x: 0 \le x_1 \le x_2 \le \cdots \le x_n \le \delta\},\$$

such that

$$\sup \{|F(x) - U(x)| : x \in Clos(\Omega)\} \le c_{17} \delta^{1/6(n+1)} + \epsilon.$$

Here c_{17} depends only on n, M, $\mathfrak{L}^{n}(\Omega)$, and diam (Ω) and is explicitly defined in 1 (9).

1. Definitions and notation. Except when otherwise stated, we shall follow the notation and terminology of [1]. Throughout this paper, n will denote a fixed integer, $n \ge 2$, Ω will denote a fixed, non-empty, bounded, convex subset of \mathbb{R}^n , and

$$u: \mathrm{Bdry} (\Omega) \to \mathbf{R}$$

will denote a fixed function satisfying the bounded slope condition with constant M (see [3, Definition 1.1]).

(1) Set

$$A = \mathfrak{L}^n(\Omega)$$

and

625

Indiana University Mathematics Journal ©, Vol. 26, No. 4 (1977)