Prime Divisors and Saturated Chains STEPHEN McADAM & EDWARD D. DAVIS

Introduction. Given a noetherian domain R with a nonzero prime ideal M, let $P \neq MR[x]$ be a prime ideal lying over M in the polynomial ring R[x]. A maximal chain of prime ideals in R_M of length s gives rise to a maximal chain in $R[x]_P$ of length s+1; but an example of Nagata shows that there may exist maximal chains in $R[x]_P$ not of length s+1 for such an s. However, if we go to the polynomial ring over R[x] and to primes lying over P, this anomalous behavior disappears [12]. In the present paper we relate these two phenomena to certain sets of discrete valuation rings dominating R_M —valuation rings extending the classical notion of "prime divisors in function fields" [13]. Our results consist largely of generalizations and simplifications of certain of the principal results of [9] and [12], and were inspired primarily by the preprint of [9].

Throughout this paper, M and R will be as above, and K will be the quotient field of R. If $A \subset B$ are domains with Q prime in B and $P = Q \cap A$, then t(B/A) and t(Q/P) will denote, respectively, the transcendence degrees of B over A, and B/Q over A/P. By \bar{A} we mean the integral closure of A.

- 1. Prime divisors. The central objects of our study will be those discrete valuation rings centered on M, which can be obtained by localizing an integral extension of a finitely generated extension of R. We call such valuation rings prime divisors (of the local domain R_M); the set of all such will be denoted by D(R, M). If L is an extension field of K, then D(R, M, L) will be the subset of D(R, M) consisting of those members of D(R, M) having quotient field L. If R contains a height 1 prime M lying over M, then obviously $R_M \in D(R, M)$ and t(M/M) = 0. The crucial observation of this paper is that the converse is true:
- 1.1. Lemma. If $(V, N) \in D(R, M)$ with t(N/M) = 0, then $ht(N \cap \bar{R}) = 1$. Proof. Let $R \subset R[d_1, \cdots, d_r] \subset A \subset V$ with A integral over $R[d_1, \cdots, d_r]$ and $V = A_{(N \cap A)}$. We may assume that $A = \bar{A}$ so that if B is the integral closure of R in A, then $B = \bar{B}$. Now $t(N \cap A/N \cap B) = 0$ and $ht(N \cap A) = 1$ together imply that $N \cap A$ is isolated over $N \cap B$. By the Peskine-Evans formulation of Zariski's main theorem on birational correspondences [3], we have $B_{N \cap B} = A_{N \cap A}$ so that $ht(N \cap B) = 1$. Since B is integral over \bar{R} , by the Going Down Theorem $ht(N \cap \bar{R}) = 1$.