## Measurability in a Banach Space

## G. A. EDGAR

Introduction. Several  $\sigma$ -algebras can be defined in a nonseparable Banach space X. For example, each topology on X (weak\*, weak, norm) has associated with it Baire sets, Borel sets, universally measurable sets. The relation between some of these  $\sigma$ -algebras is investigated. We also consider the question of when a scalarly measurable function  $\varphi$  with values in X is weakly equivalent to a Bochner measurable function. It turns out that this is true for all scalarly measurable functions  $\varphi$  if and only if the weak topology on X has a certain property, known in the literature as measure-compactness. If the weak topology for X is Lindelof or paracompact (in particular if X is a subspace of a weakly compactly generated space), then it is measure-compact. If the weak topology for X is not realcompact, then it is not measure-compact.

Section 1 concerns Borel sets in X. The weak and norm Borel sets coincide if X admits a Kadec norm (in particular if X is locally uniformly convexifiable). The weak and norm universally measurable sets always coincide. A conjugate space  $X^*$  has the Radon-Nikodym property if and only if the weak\* and norm universally measurable sets coincide.

Section 2 concerns Baire sets in X. The  $\sigma$ -algebra of weak-Baire sets is the  $\sigma$ -algebra generated by the continuous linear functionals. Thus a function  $\varphi$  from a measure space  $(\Omega, \mathfrak{F}, \mu)$  into X is scalarly measurable if and only if  $\varphi$  is measurable from  $\mathfrak{F}$  to the weak-Baire sets of X.

The third section asks what kind of subset of  $X^{**}$  (in the weak\* topology) the canonical image of X is. If X is weakly compactly generated, or if  $X = l^1(\Gamma)$ , then X is a weak\*-Borel set in  $X^{**}$ . Any Banach space X is weak\*-universally-measurable in  $X^{**}$  (a result of Tortrat),

Section 4 reviews material concerning measures in a topological space, such as measure-compact topological spaces and tight measures. Section 5 concerns scalar and Bochner measurability of functions  $\varphi:\Omega\to X$  from a measure space  $(\Omega,\mathfrak{F},\mu)$  to a Banach space X. The scalarly measurable function  $\varphi$  is weakly equivalent to a Bochner measurable function if and only if the image measure  $\varphi(\mu)$  on X is tight (according to the weak topology on X). Thus, every scalarly measurable function  $\varphi$  in X is weakly equivalent to a Bochner measurable function if and only if every measure on the weak-Baire sets of X is tight, i.e. the weak topology is "strongly measure-compact"; this happens if and only if the weak topology is measure-compact.