The Extended Variational Method Applied to the Bifurcation of Solutions to Nonlinear Problems PHILLIP H. SCHMIDT

Introduction. We propose to study the solution sets of nonlinear eigenvalue problems associated with a class of variational operators in a real separable Hilbert space. In particular we will show the existence of solution branches bifurcating from the isolated eigenvalues of finite multiplicity of the bounded self-adjoint linearization of a not necessarily completely continuous operator. We use a variational approach similar to that used by Berger [2] in proving the existence of bifurcation points for a completely continuous potential operator.

For our work we assume to begin with that A and B are odd variational operators defined in H of the forms A = L + C and B = I + D where L is a bounded self-adjoint operator, I is the identity, C and D are both compact and uniformly continuous on bounded sets, and where there are two continuous nondecreasing functions $\gamma: \mathbf{R}^+ \to \mathbf{R}^+$ and $\delta: \mathbf{R}^+ \to \mathbf{R}^+$ for which both $\gamma(r)/r \to 0$ and $\delta(r)/r \to 0$ as $r \to 0$ so that $||C(u)|| \le \gamma(||u||)$ and $||D(u)|| \le \delta(||u||)$. Furthermore it is assumed that there is some $\beta_0 > -1$ so that $\langle Du, u \rangle \ge \beta_0 ||u||^2$ for all $u \in H$. For convenience, we assume that $\beta_0 < 0$.

By variational operators we mean that A and B are the gradients of the functions f and ϕ respectively where

(1)
$$f(u) = \frac{1}{2} \langle Lu, u \rangle + \int_0^1 \langle C(su), u \rangle \, ds \quad \text{and}$$

$$\phi(u) = \frac{1}{2} ||u||^2 + \int_0^1 \langle D(su), u \rangle \, ds.$$

By A and B odd we mean that both A(-u) = -A(u) and B(-u) = -B(u) for all $u \in H$.

The eigenvalue problem which we consider is to find the solution pairs $(\lambda, u) \in \mathbb{R} \times H$ to

$$(N) Au = \lambda Bu.$$

The linearization of this problem is

691

Indiana University Mathematics Journal ©, Vol. 26, No. 4 (1977)