Note on Dunford-Pettis Property and Schur Property

PRAKASH PETHE & NIMBAKRISHNA THAKARE

1. Introduction. A Banach space X is said to have DP-property (i.e. Dunford-Pettis property) if for every weakly convergent to zero sequence (x_n) in X and for every weakly convergent to zero sequence (x_n^*) in X^* , $\lim_{n \to \infty} x_n^* x_n = 0$.

Also a Banach space X is said to possess Schur property if every weak Cauchy sequence in X is norm convergent.

Rosenthal [4] proved a fundamental result that a Banach space X contains an isomorph of ℓ_1 if and only if X admits a bounded sequence without weak Cauchy subsequences. We use this result to obtain the following:

Theorem 1. If X has DP and is (isomorphic to) a subspace of Y^* where $Y \supseteq \ell_1$ then X has the Schur property.

It is well known that dual WCG spaces have Radon-Nikodym property (RNP for short). By using the method of the proof analogous to that used to prove the above result we obtain a positive generalization of the result of Rosenthal [3] in the form:

Theorem 2. Let the Banach space X satisfy DP. Then if X is isomorphic to a subspace of a conjugate Banach space that satisfies RNP then every weak Cauchy sequence in X converges in the norm topology of X.

Our considerations along with some other people's work can be used to prove the following characterization of dual spaces with the Schur property.

Theorem 3. Let X be a Banach space. Then X^* has the Schur property if and only if X has DP and $X \supset \ell_1$.

2. Proofs.

Proof of Theorem 1. As observed by Rosenthal [3], since X is assumed to satisfy DP, given (x_n) and (f_n) sequences in X and X^* respectively such that $x_n \to 0$ weakly and (f_n) is weak Cauchy, $f_n(x_n) \to 0$.

Now we note that it is enough to show that every sequence which is weakly convergent to zero in X converges in the norm topology of X. This follows