Composition Operators on H^p with Dense Range ## RAYMOND C. ROAN **A. Introduction.** Let φ be a *non-constant* analytic function mapping the unit disk \cup into itself. We will be considering the *composition operator* C_{φ} induced by φ and defined by $$(C_{\varphi}f)(z) = (f \circ \varphi)(z) = f(\varphi(z))$$ for functions f analytic on \cup . Such composition operators are continuous on the Hardy spaces H^p , 0 . In [2], J. Caughran proved that if $\|\varphi\|_{\infty} \le 1$ and φ maps \cup conformally onto a Carathéodory domain, then the range of C_{φ} is dense in H^p , $1 \le p < \infty$. We will extend this result by proving that if $\|\varphi\|_{\infty} \le 1$ and φ is a weak* generator of H^{∞} , then the range of C_{φ} is dense in H^p , $0 . We will also characterize those functions <math>\varphi$ for which C_{φ} has either dense or closed range in H^{∞} . Finally, we will apply our result for H^p , $0 . to describe a class of domains <math>G \subseteq \mathbb{C}$ for which the polynomials are dense in $H^p(G)$. **B.** The case p finite. The space H^{∞} is a conjugate Banach space, so we can equip H^{∞} with the weak* topology. For each vector subspace \mathcal{M} of H^{∞} , let \mathcal{M}^1 be the subspace consisting of each point of H^{∞} that is a weak* limit of a sequence of points of \mathcal{M} . Inductively, define \mathcal{M}^{σ} for each uncountable ordinal number σ by $$\mathcal{M}^{\sigma} = [\bigcup \mathcal{M}^{\xi}]^{1}$$ (union over all $\xi < \sigma$). Since the predual of H^{∞} is separable, there exists a smallest countable ordinal number σ_0 such that \mathcal{M}^{σ_0} is the weak* closure of \mathcal{M} (see [1], p. 213). The number σ_0 is called the order of \mathcal{M} . We need the following well known fact. **Proposition 1.** A sequence $\{f_n\}$ in H^{∞} converges to the function f (weak*) if and only if it is uniformly bounded and converges to f at each point of \cup . **Definition.** A function φ in H^{∞} is called a weak* generator of H^{∞} if the weak* closure of the set $\mathcal{P}(\varphi) = \{P(\varphi) | P \text{ is a polynomial} \}$ is all of H^{∞} . If $\mathcal{P}(\varphi)$ is of order σ , then φ is said to be a weak* generator of H^{∞} of order σ .