Hyperinvariant Subspaces of the Direct Sum of Certain Contractions

PEI YUAN WU

Let T be a bounded linear operator acting on a complex separable Hilbert space H. A subspace K of H is said to be hyperinvariant for T if K is invariant for every operator that commutes with T. The hyperinvariant subspaces for various classes of operators have been determined before (cf. [3] and [4]). Recently, there has been some research work in characterizing hyperinvariant subspaces for $C_0(N)$ contractions [8] and for certain C_{0} contractions [9]. In this paper we consider the same problem for other classes of contractions. We characterize the hyperinvariant subspaces for $T_1 \oplus T_2$, where, for $j = 1, 2, T_j$ is a completely non-unitary contraction with a scalar-valued characteristic function φ .

Recall that a contraction $T(||T|| \le 1)$ is completely non-unitary (c.n.u.) if there exists no non-trivial reducing subspace on which T is a unitary operator. For any contraction T on H there is defined a characteristic function $\Theta_T(e^{it})$, where for each e^{it} , $\Theta_T(e^{it})$ is a contraction from $\mathscr{D}_T \equiv \overline{(I-T^*T)^{1/2}H}$ to $\mathscr{D}_{T^*} \equiv \overline{(I-TT^*)^{1/2}H}$. For properties relating the contraction to its characteristic function readers are referred to [6]. If dim $\mathscr{D}_T = \dim \mathscr{D}_{T^*} = 1$, then we denote the scalar-valued characteristic function by φ_T . Let us consider the functional model for such a contraction T, that is, we consider T being defined on the space $H \equiv [H^2 \oplus \overline{\Delta L^2}] \ominus \{(\varphi_T w, \Delta w): w \in H^2\}$ by

$$T(f, g) = P(e^{it}f, e^{it}g)$$
 for $(f, g) \in H$,

where P denotes the (orthogonal) projection onto H and $\Delta=(1-|\varphi_T|^2)^{1/2}$. It was shown in [6] that there is a one-to-one correspondence between the invariant subspaces for T and the regular factorizations $\varphi_T=\varphi_2$ φ_1 of its characteristic function φ_T . Recall that $\varphi_T=\varphi_2$ φ_1 is called a scalar regular factorization if both φ_1 and φ_2 are scalar-valued functions and $|\varphi_2(e^{it})|=1$ or $|\varphi_1(e^{it})|=1$ for almost all t; it is called a vector regular factorization if $\varphi_2=(f_{21}\,f_{22})$ and $\varphi_1=\begin{pmatrix} f_{11}\\f_{12} \end{pmatrix}$, where f_{11}, f_{12}, f_{21} and f_{22} are functions in H^∞ satisfying $|f_{21}(e^{it})|^2+|f_{22}(e^{it})|^2=|f_{11}(e^{it})|^2+|f_{12}(e^{it})|^2=1$ a.e. A regular factorization of φ_T can only be a scalar regular factorization or a vector regular factorization (cf. [6], p. 301). Let φ_i and φ_e denote the inner part and outer part of φ_T , respectively.