The Endomorphisms of L_p $(0 \le p \le 1)$

N. J. KALTON

1. Introduction. In [12] Kwapień gives a representation theorem for the endomorphisms of the F-space $L_0(=L_0(0,1))$ of all real (or complex) measurable functions on (0,1) with the topology of convergence in measure; this followed an earlier paper of Berg, Peck and Porta [1] on the complemented subspaces of L_0 . We first state Kwapień's theorem for future reference. The version given below is a slight modification of Kwapień's original statement.

Theorem 1.1. (Kwapień) Let K be a Polish space and let λ be a probability measure defined on the Borel subsets \mathcal{B} of K. Let (X, Σ, μ) be a measure space with $\mu(X) = 1$. Let $T: L_0(K, \mathcal{B}, \lambda) \to L_0(X, \Sigma, \mu)$ be a continuous linear operator; then T takes the form

(1.1.1)
$$Tf(x) = \sum_{n=1}^{\infty} a_n(x) f(\sigma_n x) \qquad \mu\text{-a.e.} \qquad f \in L_0(K)$$

where

- (i) $\{a_n\}$ is a sequence of elements of $L_0(X, \Sigma, \mu)$ such that $\mu\{x : a_n(x) \neq 0 \text{ for infinitely many } n\} = 0$.
- (ii) $\sigma_n: X \to K$ is a sequence of $\Sigma \mathcal{B}$ measurable mappings satisfying the condition that if $\lambda(A) = 0$ then $\mu(\sigma_n^{-1}(A) \cap \{x : a_n(x) \neq 0\}) = 0$.

Conversely if $\{a_n\}$ and $\{\sigma_n\}$ satisfy (i) and (ii), then (1.1.1) defines an operator from $L_0(K)$ into $L_0(X)$.

We have modified Kwapién's statement to the extent that we assume each σ_n Σ -measurable and not merely measurable with respect to the completion of Σ . This is permissible since K is Polish.

Let us now state Theorem 1.1 in a different form.

Theorem 1.2. Let K be a compact metric space and let λ be a probability measure on K. Let (X, Σ, μ) be a measure space with $\mu(X) = 1$. Let $T: L_0(K, \mathcal{B}, \lambda) \to L_0(X, \Sigma, \mu)$ be a continuous linear operator; then T takes the form

(1.2.1)
$$Tf(x) = \int_{K} f(t)d\nu_{x}(t) \qquad \mu\text{-a.e.}, \qquad f \in L_{0}(K)$$