On Commuting Self-Adjoint Extensions of Unbounded Operators

S. P. SLINKER

- 1. Introduction. If A and B are symmetric operators defined on a dense domain \mathcal{D} in a separable Hilbert space \mathcal{H} which satisfy $A\mathcal{D} \subset \mathcal{D}$, $B\mathcal{D} \subset \mathcal{D}$, and $AB\psi = BA\psi$ for all $\psi \in \mathcal{D}$, we find sufficient conditions that A and B have commuting self-adjoint extensions; namely that A and B are real with respect to a conjugation J, and A has a self-adjoint extension A_0 , also real with respect to J, with the property that the unitary group generated by A_0 commutes weakly (Definition 2.2) with B. This result is applied to the case where \mathcal{D} is a set of analytic vectors for A. In the last section the connection between certain positivity conditions and the existence of commuting self-adjoint extensions is studied.
- **2.** Commutativity. The commutativity of unbounded operators poses difficulties because of the problems with the domains involved. We are concerned with the case where the unbounded operators are symmetric or self-adjoint. We first consider commutativity when one of the operators is bounded. Suppose A is a symmetric operator, i.e., $A \subset A^*$, defined on the dense domain $\mathcal{D}(A)$ in the separable Hilbert space \mathcal{H} . Let B be an element of $\mathcal{B}(\mathcal{H})$, the bounded operators on \mathcal{H} .

Definition 2.1. B commutes strongly with A provided $AB \supset BA$. That is, if $\psi \in \mathcal{D}(A)$ then $B\psi \in \mathcal{D}(A)$ and $AB\psi = BA\psi$.

If B commutes strongly when A then it commutes strongly with the closure \bar{A} of A. If A is self-adjoint, i.e., $A = A^*$, then B commutes strongly with A if and only if it commutes with the spectral projections of A in the usual sense [11, Theorem 8.1].

A weaker notion of commutativity is the following [1];

Definition 2.2. If A is a symmetric operator on the dense domain $\mathcal{D}(A)$ and $B \in \mathcal{B}(\mathcal{H})$ then B commutes weakly with A provided $(\psi, BA\phi) = (A\psi, B\phi)$ for all $\psi, \phi \in \mathcal{D}(A)$.