Ratio Limit Theorems for Hitting Times and Hitting Places

SAMUEL D. OMAN

1. Introduction and statement of results. Let $\{X_n\}$ be a recurrent random walk generated by a probability measure μ , with state space $S \subseteq \mathbb{R}^d (d \le 2)$. For any Borel set $B \subseteq S$ let $T_B = \inf \{n > 0 \colon X_n \in B\}$ ($=\infty$ if no such n exists) be the hitting time of B and set $R_n = P^D(T_D > n) \equiv \int_D P^x(T_D > n) dx$ where D is the unit ball in S. Here $P^x(\cdot)$ denotes $P(\cdot|X_0 = x)$ and dx denotes Haar measure (S is assumed equal to \mathbb{R}^d , \mathbb{Z}^d or $\mathbb{R} \times \mathbb{Z}$).

In [2] Kesten and Spitzer obtained the following ratio limit theorem for $S = \mathbb{Z}^d$:

(1.1)
$$\lim_{n \to \infty} \frac{P^x(T_B > n)}{R_n} = L_B(x) < \infty$$

for any $x \in S$ and any bounded set $B \subseteq S$. They also showed that for $A \subseteq B$

(1.2)
$$\lim_{n\to\infty}\frac{P^x(T_B>n;X_{T_B}\in A)}{R_n}=L_B(x)\int_A\hat{L}_B(y)dy<\infty,$$

where \hat{L}_B is L_B defined for the reversed random walk (generated by the measure $\hat{\mu}$ defined by $\hat{\mu}(A) = \mu(-A)$, $A \subseteq \mathbb{R}^d$). An intuitive interpretation of (1.2) when $L_B(x)$ is nonzero is that if a long time has elapsed and the process has not yet hit B, then its hitting place in B does not depend on its starting point. For $S = \mathbb{Z}^d$ one may also write (1.2) as

(1.3)
$$\lim_{n \to \infty} \frac{E^{x}[g(X_{T_{B}}); T_{B} > n]}{R_{n}} = L_{B}(x) \int_{B} g(y)\hat{L}_{B}(y)dy < \infty$$

for any real-valued function g on B. This formulation is of interest due to potential theoretic considerations. Namely, let the operator Δ on bounded Borel measurable function on S be defined by

$$\Delta f(x) = \int P^x(X_1 \in dy) f(y) - f(x).$$