Convolutions of Starlike Functions

JOHN L. LEWIS

1. Introduction. Let $\Delta = \{z : |z| < 1\}$, $\bar{\Delta} = \{z : |z| \le 1\}$, and $T = \{z : |z| = 1\}$. Given $\alpha, -\infty < \alpha \le 1$, let $S(\alpha)$ be the class of normalized starlike functions of order α in Δ . An analytic function f in Δ is in $S(\alpha)$ if and only if f(0) = 0, f'(0) = 1, and

(1.1)
$$\operatorname{Re}[zf'(z)/f(z)] \ge \alpha, \quad z \in \Delta.$$

We shall say that an analytic function g on $\bar{\Delta}$ is starlike of order α on $\bar{\Delta}$, if for some R>1, the function $z\to g(Rz)$, is a constant multiple of an $f\in S(\alpha)$. Using the Poisson integral formula and integrating (1.1), it follows that $f\in S(\alpha)$ if and only if

(1.2)
$$\log (f(z)/z) = -2(1-\alpha) \int_{T} \log (1-e^{-i\theta}z) d\mu(e^{i\theta}), \quad z \in \Delta,$$

for some probability measure μ on T. Note that the function

(1.3)
$$z/(1-z)^{2(1-\alpha)} = \sum_{n=1}^{\infty} A_n(\alpha) z^n,$$

$$A_n(\alpha) = \Gamma(n+1-2\alpha)/[\Gamma(2-2\alpha)(n-1)!],$$

is in $S(\alpha)$, as follows easily from (1.2). Let $C(\alpha)$ denote the class of analytic functions g in Δ satisfying g(0) = 0, g'(0) = 1 and the condition that

(1.4)
$$\operatorname{Re}[zg'(z)/h(e^{i\theta}z)] \geq 0, \quad z \in \Delta,$$

for some $h \in S(\alpha)$ and θ real.

For fixed α , $-\infty < \alpha \le 1$, and f, g analytic in Δ with f(0) = g(0) = 0, define the convolution of f and g [denoted $(f * g)_{\alpha}$] as follows: If

$$f(z) = \sum_{n=1}^{\infty} a_n z^n,$$

and

$$g(z) = \sum_{n=1}^{\infty} b_n z^n,$$

671

Indiana University Mathematics Journal ©, Vol. 27, No. 4 (1978)