On Multipliers of H^p Spaces

W. T. SLEDD

1. Introduction. Let H^p , $1 \le p < \infty$, denote the Banach space of functions $f(z) = \sum_{n=0}^{\infty} \hat{f}(n)z^n$ analytic in $\{z: |z| < 1\}$ for which

$$M_p(f, r) = \left(\frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^p d\theta\right)^{1/p}$$

is bounded as a function of r when 0 < r < 1. Then $\lim_{r \to 1^-} f(re^{i\theta}) = f^*(e^{i\theta})$ exists a.e. and

$$||f||_p = ||f^*||_{L^p} = \lim_{r \to 1^-} M_p(f, r)$$

is a complete norm on H^p . (See reference [1] for these and other facts about H^p spaces.)

Let

$$\Lambda(z) = \sum_{0}^{\infty} \lambda_{n} z^{n} \text{ in } \{z: |z| < 1\},$$

and write

$$f * \Lambda(z) = \sum_{n=0}^{\infty} \lambda_n \hat{f}(n) z^n.$$

The sequence $\lambda = (\lambda_n)$ is said to be an $H^p - H^q$ multiplier if whenever $f \in H^p$ then $f * \Lambda \in H^q$. It follows from the closed graph theorem that $T_{\lambda}f = f * \Lambda$ is a bounded linear operator from H^p into H^q and so there is a constant C_{λ} so that $||T_{\lambda}f||_q \leq C_{\lambda}||f||_p$. Denote the set of $H^p - H^q$ multipliers by (H^p, H^q) .

Hardy and Littlewood [3] have proved the following theorem.

Theorem A. If
$$1 \le p \le 2 \le q$$
 and $p^{-1} - q^{-1} = 1 - \sigma^{-1}$ and if (1.1) $M_{\sigma}(\Lambda', r) \le C(1 - r)^{-1}$

then $\lambda \in (H^p, H^q)$.

The condition (1.1) is sometimes also necessary. For let $\varphi_r(z) = (1 - r^2)(1 - rz)^{-2}$ when 0 < r < 1. Since $|\varphi_r(e^{i\theta})| = P_r(\theta)$, the Poisson kernel, it follows that $||\varphi_r||_1 = 1$. Thus if $\lambda \in (H^1, H^q)$ then $||T_\lambda \varphi_r||_q \le C_\lambda$ independently of