The Maximal Nonnegative Reducing Subspaces of J-selfadjoint Operators

JOHN DAUGHTRY

Introduction. R. S. Phillips has conjectured that every commutative family of J-unitary (or J-selfadjoint) operators on a Krein space K with indefinite inner product J has a maximal nonnegative invariant subspace, and he has shown that a normal, J-unitary or J-selfadjoint operator N has a reducing maximal nonnegative subspace as required by the conjecture. Using generalized inverses, we construct maximal nonnegative reducing subspaces for such an operator N, and we characterize the set of J-selfadjoint operators having maximal nonnegative reducing subspaces. Also, we demonstrate that a normal J-selfadjoint (or J-unitary) operator cannot have a uniformly positive maximal nonnegative invariant subspace, except in the trivial case of an operator which is also selfadjoint (unitary).

If N is a normal operator belonging to a commutative family \mathbf{F} of J-selfadjoint operators, we find a direct sum decomposition of \mathbf{K} which reduces each element of \mathbf{F} and decomposes N into a selfadjoint, J-selfadjoint piece and a "pure J-selfadjoint" piece. Such a normal, pure J-selfadjoint operator S has at least two maximal nonnegative invariant subspaces which reduce every J-selfadjoint operator commuting with S. We determine sufficient conditions for such a subspace to be neutral and the range of a spectral projection for S.

By a "Krein space" we mean a complex Hilbert space K together with an orthogonal decomposition $\mathbf{K} = \mathbf{K}_1 \oplus \mathbf{K}_2$ and the associated bilinear form $(x, y) \to \langle Jx, y \rangle$ where \langle , \rangle , denotes the inner product in \mathbf{K} and $J = P_1 - P_2$ with P_i representing the orthogonal projection on \mathbf{K}_i . In this setting we may speak of a "selfadjoint operator" (for example) with respect to the inner product or a "J-selfadjoint" operator H characterized by $\langle JHx, y \rangle = \langle Jx, Hy \rangle$ for all x and y in \mathbf{K} . A "J-unitary" operator U on \mathbf{K} is an invertible operator satisfying $\langle JUx, Uy \rangle = \langle Jx, y \rangle$ for all x and y in \mathbf{K} . All operators are assumed to be bounded and linear unless specified otherwise, and a space of bounded linear operators is denoted $\mathbf{B}(\)$ in the usual manner. General references for Krein spaces are [2] and [7].

Operators on K will often be written in the 2×2 matrix form determined by the decomposition $K = K_1 \oplus K_2$, which for a *J*-selfadjoint operator is