Some Consequences of Rudin's Paper L_p -Isometries and Equimeasurability"

WOLFGANG LUSKY

In [9] Rudin investigated the following situation: Let (X, Σ, μ) and $(Y, \tilde{\Sigma}, \nu)$ be positive measure spaces. Assume that E is a subspace of $L_p(\mu)$ and $T: E \to L_p(\nu)$ is a linear isometry. (All Banach spaces considered here are complex.) Let $e_1, \dots, e_n \in E$ and put $\mathscr{E} = (e_1, \dots, e_n)$, $T\mathscr{E} = (Te_1, \dots, Te_n)$. We shall call \mathscr{E} and $T\mathscr{E}$ equimeasurable, if for any Borel set $\Omega \subset \mathbb{C}^n$, $\mu(\mathscr{E}^{-1}(\Omega)) = \nu((T\mathscr{E}^{-1})(\Omega))$. Clearly the equimeasurability of \mathscr{E} and $T\mathscr{E}$ is equivalent to

$$\int_{X} \psi \circ \mathscr{C} d\mu = \int_{Y} \psi \circ T \mathscr{C} d\nu$$

for all Borel measurable functions $\psi : \mathbb{C}^n \to \mathbb{C}$. One of the main results in [9] is then the following

Theorem (Rudin). Let μ , ν be finite. Consider $0 ; <math>p \neq 2, 4, 6, \cdots$. Assume furthermore $1_X \in E$, $T 1_X = 1_Y$. Then $\mathscr E$ and $T\mathscr E$ are equimeasurable.

Applying this theorem we prove that it is always possible to extend an isometry T from an arbitrary subspace E of L_p ; $p \neq 4, 6, 8, \cdots$; to an isometry from a "nice" subspace $F \supset E$. We show that a certain homogeneity property holds for $L_p(0, 1)$; $p \neq 4, 6, 8, \cdots$, which is similar to a corresponding property of the Gurarij space, and asserts that all finite-dimensional subspaces of $L_p(0, 1)$, whose geometries coincide, are almost in the same position in $L_p(0, 1)$. It seems surprising that these properties fail to be true in the remaining cases $p = 4, 6, 8, \cdots$.

Proposition 1. Let $1 \le p < \infty$; $p \ne 4, 6, 8, \cdots$; and let the above situation be given (μ, ν) arbitrary positive measures. Then there is a subspace $F \subset L_p(\mu)$ with $E \subset F \cong L_p$ and an extension of T to an isometry $\tilde{T}: F \to L_p(\nu)$.

Proof. Let $E \subset L_p(\mu)$ and $T: E \to L_p(\nu)$ be given. Let $e_i \in E$; $i = 1, \dots, 2n$. Since supp e_i , supp Te_i ; $i = 1, \dots, 2n$; are σ - finite we have that

$$\mu\left(\bigcup_{i=1}^{2n} \text{ supp } e_i\right) \neq \mu\left(\text{supp}\left(\sum_{i=1}^{2n} \alpha_i e_i\right)\right)$$

859

Indiana University Mathematics Journal ©, Vol. 27, No. 5 (1978)