Eta Invariants for G-Spaces

HAROLD DONNELLY

Introduction. Let X^{4k} be a compact oriented Riemannian manifold of dimension 4k. We suppose that X may have non-empty boundary Y^{4k-1} , of dimension 4k-1. Moreover we will assume that the metric of X is a product near its boundary Y. By considering the cup product

$$H^{2k}(X, Y) \times H^{2k}(X, Y) \rightarrow H^{4k}(X, Y)$$

and evaluating on the fundamental cycle $[X, Y] \in H_{4k}(X, Y)$ one obtains a symmetric bilinear form on $H^{2k}(X, Y)$. The signature of this bilinear form will be denoted by $\mathrm{Sign}(X)$. Now suppose that $L_k(p_1(\Omega), p_2(\Omega), \dots, p_k(\Omega))$ is the L_k polynomial of Hirzebruch in the Pontriagin forms $p_i(\Omega)$, $1 \le i \le k$, of X. The Hirzebruch signature theorem [13] states that the difference

(I.1)
$$\int_{X} L_{k}(p_{1}(\Omega), p_{2}(\Omega), \cdot \cdot \cdot, p_{k}(\Omega)) - \operatorname{Sign}(X)$$

vanishes if Y is empty. If X is not a closed manifold then the difference (I.1) is not necessarily zero. However it follows from the Hirzebruch signature theorem applied to the double of X that the quantity given by (I.1) depends only on Y and its Riemannian metric.

In their paper [3], Atiyah, Patodi, and Singer established the surprising result that the invariants (I.1) are in fact spectral invariants of the boundary Y. If $\Lambda(Y)$ is the exterior algebra of Y, then let $\Lambda^{\text{ev}}(Y)$ be the subspace of the exterior algebra which consists of forms having type 2p for some $0 \le p \le 2k-1$. There is a first order self-adjoint elliptic operator $B^{\text{ev}}: \Lambda^{\text{ev}}(Y) \to \Lambda^{\text{ev}}(Y)$; B^{ev} is naturally defined in terms of the Riemannian geometry of Y. Now B^{ev} has pure point spectrum consisting of eigenvalues λ with multiplicity $\dim(\lambda)$. The spectral function

$$\eta(s, Y) = \sum_{\lambda \neq 0} (\operatorname{sign} \lambda) (\dim \lambda) |\lambda|^{-s}$$

converges for Re(s) sufficiently large and has a meromorphic continuation to the entire complex s-plane. Moreover, $\eta(0, Y)$ is finite. The central result of [3] is that