Differentiable Maps with Small Critical Set or Critical Set Image

P. T. CHURCH & J. G. TIMOURIAN

- **1.1.** Theorem. Let $f: M^n \to N^p$ be a $C^m(m \ge n)$ proper map, and let $\Sigma(f)$ be its critical set. If dim $\Sigma(f) \le n-2$, and dim $f(\Sigma(f)) \le p-3$, then there is a factorization f=hg such that
- (1) $g: M^n \to K^p$ is a C^m monotone map (i.e., each $g^{-1}(y)$ is connected) onto the C^m manifold K^p ; and
- (2) $h: K^p \to N^p$ is a k-to-1 diffeo-covering map. Moreover, the factorization is unique, i.e.
- (3) if $h\bar{g}$ is another such factorization with intermediate space L^p , then there is a C^m diffeomorphism α of K^p onto L^p such that $\bar{g} = \alpha g$ and $h\bar{\alpha} = h$.

In case n = p the hypotheses m = 3 and dim $\Sigma(f) \le n - 3$ alone imply the conclusion [C-6; (1.1)] (see (5.1)). Examples in §5 show that the dimension hypotheses cannot be improved, and the topological analog is false. The condition C^m may be replaced by C^∞ or real analytic.

Theorem (1.1) is a corollary of a generalization (4.5) of the following result.

1.2. Theorem. If $f: M^n \to N^p$ is C^n and proper, and dim $f(\Sigma(f)) \neq p-1$, then there is a closed set $Y \subset N^p$ with

dim
$$Y < \max(0, \dim f(\Sigma(f))),$$

and for every $x \in M^n - f^{-1}(Y)$ there is a neighborhood U of x with f|U topologically equivalent to one of the following proper maps:

- (1) $c \times \iota : K^{n-q} \times R^q \to R^{p-q} \times R^q$, where c is constant, ι is the identity map, and K^{n-q} is closed $(q = 0, 1, \dots, p)$.
- (2) $(\beta \times \iota)\alpha$, where $\alpha : K^{n-q} \times R^q \to X \times R^q$ is a monotone map with $\alpha(u, t) = (\alpha_t(u), t)$; X is the one-point union $\bigvee_i R_i$ of a finite number k of copies of R^{p-q} meeting at 0; for $p-q \neq 2$, $\beta | R_i : R_i \to R^{p-q}$ is the identity; while for p-q=2, $R^{p-q}=C$ and $(\beta | R_i)(z)=z^{d(i)}$ ($d(i)=1,2,\cdots;q=0,1,\cdots,p$).

That Y is nicely embedded is shown in (4.9). Analogous results are given for differentiable monotone maps (4.6) and for maps with n = p and non-negative Jacobian determinant (4.7). In case dim $f(\Sigma(f)) \le 0$ and $f(\Sigma(f))$ is locally tame, (1.2) is proved in [C-T-1; (1.1)]. In particular, the local tameness hypoth-