A Pathology in the Ideal Space of $L(H)\otimes L(H)$

SIMON WASSERMANN

Introduction. In this paper we establish various results along the lines of those in [15]. If A and B are C*-algebras $A \odot B$ and $A \otimes B$ will denote their algebraic and spatial C*-tensor products, respectively. One of our main results, Theorem 4, states that if H is a separable infinite-dimensional Hilbert space and τ denotes the quotient map of L(H) onto the Calkin algebra A(H)L(H)/LC(H), the homomorphism $\tau \odot \tau : L(H) \odot L(H) \rightarrow A(H) \odot A(H)$ extends to a *-homomorphism of $L(H) \otimes L(H)$ onto $A(H) \otimes_{\eta} A(H)$, where η is a C*norm distinct from the spatial C*-norm. In fact we exhibit a separable C*-subalgebra D of L(H), containing the compact operators LC(H), such that the restriction of the norm η to $\tau(D) \odot \tau(D)$ differs from the spatial norm. One corollary of this is the surprising result that the ideal $(LC(H) \otimes L(H)) + (L(H) \otimes L(H))$ LC(H) of $L(H) \otimes L(H)$ is not maximal. As a further consequence we give an alternative proof of the recent result of J. Anderson [2] that there exists no completely positive lifting of $\tau(D)$ into L(H). In Theorem 12, a strengthening of [15, Corollary 1.8], we furnish an explicit example of a separable C*-algebra which cannot be embedded as a closed *-subalgebra of a nuclear C*-algebra. Finally we show how one of our techniques can be used to give a simplified proof of the result of Sakai [10, 4.6.13] that if A is a C*-algebra containing a closed *-subalgebra B which has a UHF quotient, then A has a type III factor representation.

Our notation and terminology follow [15].

such that

1. The following lemma, which will be used repeatedly, is a generalization of [8, Theorem 3.3] and [15, Proposition 1.3].

Lemma 1. Let A be a unital C*-algebra acting non-degenerately on the Hilbert space H, and let π be a non-degenerate representation of a unital C*-algebra B on H such that $\pi(B) \subseteq A'$. Suppose that the mapping $A \odot B \to L(H)$; $\sum a_i \otimes b_i \to \sum a_i \pi(b_i)$ is bounded when $A \odot B$ is endowed with the spatial C*-norm. Then there is a completely positive unital contraction $\rho: L(H) \to \pi(B)'$

$$\rho(axb) = a\rho(x)b \qquad (a, b \in A, x \in L(H)).$$
1011

Indiana University Mathematics Journal ©, Vol. 27, No. 6 (1978)