Stable p-Equivalences of Stunted Complex Projective Spaces

DONALD M. DAVIS

1. Introduction. Let p be a prime number. Spaces X and Y are stably p-equivalent if there exist integers r and s and a p-equivalence $f: \Sigma^r X \to \Sigma^s Y$, i.e. f induces an isomorphism in Z_p -cohomology. Let $CP_n^{n+k} = CP^{n+k}/CP^{n-1}$ denote the stunted complex projective space. Let $\nu_p(m)$ be the highest power of p that divides m.

Our main results are the following two theorems.

Theorem 1.1. i) CP_n^{n+2} and CP_m^{m+2} are stably 2-equivalent if and only if $n \equiv m(8)$ or $n \equiv m \equiv 2, 3(4)$.

- ii) CP_n^{n+3} and CP_m^{m+3} are stably 2-equivalent if and only if $n \equiv m(8)$ or $n \equiv m \equiv 2(4)$.
- iii) CP_{8k}^{8k+4} and $CP_{8\ell}^{8\ell+4}$ are stably 2-equivalent if and only if $k \equiv \ell(8)$ or $\nu_2(k) = \nu_2(\ell)$. Dually, $CP_{8k}^{8k-\frac{1}{5}}$ and $CP_{8\ell}^{8\ell-\frac{1}{5}}$ are stably 2-equivalent if and only if $k \equiv \ell(8)$ or $\nu_2(k) = \nu_2(\ell)$.
 - iv) If CP_n^{n+4} and CP_m^{m+4} are stably 2-equivalent, then
 - a) $n \equiv m(8)$
 - b) if $n \equiv 1$ or 2(8), then $n \equiv m(16)$
 - c) if n = 1 or 10(16), then n = m(32).

Theorem 1.2. Let p be an odd prime.

- i) If $i , then <math>CP_n^{n+i}$ and CP_m^{m+i} are stably p-equivalent.
- ii) If $0 \le i < p-1$, then $CP_n^{n+p-1+i}$ and $CP_m^{m+p-1+i}$ are stably p-equivalent if and only if $n \equiv m(p)$ or $1 \le n$, $m \le p-1-i(p)$.
- iii) If $0 \le i < p-1$, then $CP_n^{n+2(p-1)+i}$ and $CP_m^{m+2(p-1)+i}$ are stably pequivalent if and only if (a) $n = m(p^2)$ or (b) n = m(p) and $1 \le n$, m, n+2p-1, $m+2p-1 \le p^2-1-i(p^2)$.

In [7] and [8] Feder and Gitler determine which stunted complex projective spaces have the same stable homotopy type. Our results indicate that there are more p-equivalences than one might expect from naively localizing their result. Indeed, our theorems give the following examples of pairs ([X], [Y]) of distinct stable homotopy types which are stably p-equivalent for all primes p: