Similarity Cross Sections for Operators

LAWRENCE A. FIALKOW

1. Introduction. This note concerns Hilbert space operators T for which the mapping $X \to X^{-1}TX$ admits a locally defined continuous cross section. To make this notion precise we introduce the following terminology. Let \mathscr{A} denote a Banach algebra with identity and let $\mathscr{S}(\mathscr{A})$ denote the group of all invertible elements in \mathscr{A} . For $T \in \mathscr{A}$, let $\mathscr{S}(T)$ denote the similarity orbit of T, i.e. $\mathscr{S}(T) = \{X^{-1}TX : X \in \mathscr{S}(\mathscr{A})\}$. Let $q: \mathscr{S}(\mathscr{A}) \to \mathscr{S}(T)$ be the norm continuous mapping defined by $q(X) = X^{-1}TX$; a local cross section for q is a pair (φ, \mathscr{B}) such that \mathscr{B} is a relatively open subset of $\mathscr{S}(T)$ containing T, $\varphi: \mathscr{B} \to \mathscr{S}(\mathscr{A})$ is norm continuous, $\varphi(T) = 1$, and $q \circ \varphi = 1_{\mathscr{B}}$, i.e. $\varphi(S)^{-1}T\varphi(S) = S$ for each S in \mathscr{B} . If q has a local cross section we say that T has a (local) similarity cross section, and in this case T satisfies the following sequential similarity lifting property (hereafter referred to as property (Q)). (Q) If $\{X_n\} \subset \mathscr{S}(\mathscr{A})$ and $X_n^{-1}TX_n \to T$, then there exists $\{W_n\} \subset \mathscr{S}(\mathscr{A})$ such that $W_n \to 1$ and $W_n^{-1}TW_n = X_n^{-1}TX_n$ for each n. In this note we are primarily interested in the case $\mathscr{A} = \mathscr{L}(\mathscr{H})$, the algebra of all bounded linear operators on a separable complex Hilbert space \mathscr{H} .

Our interest in similarity cross sections is motivated by the study of unitary cross sections ([4] [6] [7]), whose principal result we now describe. Let $\mathcal{U}(\mathcal{H})$ denote the group of all unitary operators on \mathcal{H} , and for T in $\mathcal{L}(\mathcal{H})$ let $\mathcal{U}(T) = \{U^*TU : U \in \mathcal{U}(\mathcal{H})\}$, the unitary orbit of T. Let $p: \mathcal{U}(\mathcal{H}) \to \mathcal{U}(T)$ be defined by $p(U) = U^*TU$. If p admits a local cross section, then T is said to have a (local) unitary cross section. In [4], D. Deckard and the author obtained the following characterization of operators with unitary cross sections.

Theorem 1.1. For $T \in \mathcal{L}(\mathcal{H})$ the following are equivalent:

- i) T has a local unitary cross section;
- ii) T satisfies the sequential unitary lifting property [6];
- iii) $\mathcal{U}(T)$ is norm closed in $\mathcal{L}(\mathcal{H})$;
- iv) $C^*(T)$, the C^* -subalgebra generated by T and 1, is finite-dimensional;
- v) there exist operators A and B, acting on finite-dimensional spaces, such that T is unitarily equivalent to $A \oplus B \oplus B \oplus \cdots \oplus B \oplus \cdots$.

(The equivalence of iii) and iv) is due to D. Voiculescu [13].)

In Theorem 2.2 we prove that each operator satisfying the sequential similarity lifting property is similar to a Jordan operator (defined below). Thus each