Regularity Properties of Riesz Potentials

BJÖRN E. J. DAHLBERG

1. Introduction. In this paper we shall deal with certain L^p -estimates of Riesz potentials of L^p -functions. We shall prove that if μ is a measure on R^n satisfying $\mu(K) \leq C R_{\alpha,p}(K)$ for all compact sets K in R^n then

$$||I_{\alpha}f||_{p,\mu} \le C||f||_{p}.$$

Here

$$I_{\alpha}f(x) = \int f(y)|x - y|^{\alpha - n}dy,$$

 $R_{\alpha,p}$ is the Riesz capacity (see Section 2 for definition), $0 < \alpha < n$ and $1 . The result (1) was first proved by Maz'ya ([5] and [6]) for <math>\alpha = 1,2$ and by Adams [1] for the case α is an integer and $0 < \alpha < n$. The point of this paper is the extension to nonintegral values. The proof of (1) is a straightforward consequence of the following theorem, which is our main result.

Theorem 1. If α is a number such that $0 < \alpha < n$ and 1 then

$$\int_0^\infty R_{\alpha,p}(\{x: |I_\alpha f(x)| > \lambda\}) \lambda^{p-1} d\lambda \le C ||f||_p^p,$$

where C is a constant which only depends on α , p and n.

We remark that if (1) holds then by considering equilibrium-distributions it is easily seen that $\mu(K) \le \text{const } R_{\alpha,p}(K)$. Also (1) follows from Theorem 1, since

$$\begin{split} ||I_{\alpha}f||_{p,\mu}^{p} &= p \int_{0}^{\infty} \mu(\{x: |I_{\alpha}f(x)| > \lambda\}) \lambda^{p-1} d\lambda \\ &\leq C^{p} \int_{0}^{\infty} R_{\alpha,p}(\{x: |I_{\alpha}f(x)| > \lambda\}) \lambda^{p-1} d\lambda \leq C^{p} ||f||_{p}^{p}. \end{split}$$

We also remark that the restriction $p < n/\alpha$ is necessary since if $n/\alpha \le p \le \infty$ there is a function $f \in L^p(\mathbb{R}^n)$ such that $I_\alpha f(x) = \infty$ for all $x \in \mathbb{R}^n$.

The proof of Theorem 1 is based on the following result.

Theorem 2. Let $0 < \alpha < n$ and $1 . Let <math>\alpha^*$ denote the smallest integer $\geq \alpha$ and suppose $\phi: (0, \infty) \to R$ is α^* times continuously differentiable