The Invariance of Partial Isometries

ROBERT GRONE

Introduction. In [1] Marcus proved that if T is a linear transformation on $M_n(\mathbb{C})$, the space of $n \times n$ complex matrices which satisfies

A is unitary implies T(A) is unitary,

then there exists fixed $n \times n$ unitary matrices U, V such that T has the form

$$T(A) = UAV$$
, for all $A \in M_n(\mathbb{C})$,

or

$$T(A) = UA^tV$$
, for all $A \in M_n(\mathbb{C})$.

In this paper an analogous result is obtained for linear maps T on the $m \times n$ complex matrices (m < n) which satisfy

(1) A is a partial isometry implies T(A) is a partial isometry.

The result is contained in the following:

Theorem. If for some 1 < m < n

$$T: M_{m,n}(\mathbb{C}) \to M_{m,n}(\mathbb{C})$$

is a linear transformation which satisfies (1), then there exists fixed $m \times m$, $n \times n$ unitary matrices U, V such that T has the form

(2)
$$T(A) = UAV$$
, for all $A \in M_{m,n}(\mathbb{C})$.

Of course, it is clear that the converse of this theorem is also true.

Notation. The space of $m \times n$ complex matrices is denoted by $M_{m,n}(\mathbb{C})$, or $M_n(\mathbb{C})$ when m = n. The set of matrices which satisfy

$$AA^* = I_m$$
, the $m \times m$ identity

is denoted by $\mu_{m,n}$ or μ_n when m = n. If $m \neq n$ these matrices are referred to as partial isometries, or unitary matrices when m = n. For m < n, the characterization of partial isometries as being those whose rows are orthonormal (0.n.) will be useful.