Residuality of Ergodic Measurable Transformations and of Ergodic Transformations which Preserve an Infinite Measure

J. R. CHOKSI & SHIZUO KAKUTANI

§0. Introduction. Let (X, \mathbb{M}, λ) be a finite or σ -finite measure space. For the group \mathcal{M} of invertible, measure preserving transformations, or more generally for the group \mathcal{G} of invertible, measurable, non-singular transformations, it is natural to ask whether the subset of those transformations which are ergodic, is, in some sense, large. It was shown by Halmos [5] in 1944, that if (X, \mathbb{M}, λ) is a Lebesgue probability space (i.e. is isomorphic to the unit interval with Lebesgue measure), and the group \mathcal{M} is endowed with what he called the weak topology (we call this the coarse topology), which makes it a Baire space, the set of ergodic transformations is a residual, dense \mathcal{G}_{δ} set. In this paper we prove an analogous result for the group \mathcal{G} , over a Lebesgue probability space, endowed with the coarse topology (as introduced by A. Ionescu Tulcea [10]). Using this we prove the analogous result for the group \mathcal{M} when (X, \mathbb{M}, λ) is a Lebesgue space of *infinite* measure (i.e. is isomorphic to the line with Lebesgue measure); this result has been proved in 1971, by U. Sachdeva [13]. For this last group we also prove that the conjugates of any fixed antiperiodic transformation are dense. We next consider various possible definitions of the coarse topology on \mathcal{G} , (using isometries in L^p , $1 \le p < \infty$, and varying p) and show that they all yield the same topology. Finally we raise the possibility of proving similar results on measure preserving homeomorphisms of \mathbb{R}^n ($n \ge 2$), analogous to those proved in 1941 by Oxtoby and Ulam [12] for $[0, 1]^n$.

We wish to thank V. S. Prasad for several helpful discussions, L. Sucheston and U. Krengel for drawing our attention to the work of Sachdeva, and the referee for suggesting a much shorter proof of Theorem 4.

§1. The coarse topology for measurable transformations. Let (X, \mathbb{M}, μ) be a Lebesgue space with $\mu(X) = 1$, $\mathcal{G} = \mathcal{G}(\mu)$ the group of measurable, invertible, non-singular transformations on (X, \mathbb{M}, μ) , and $\mathcal{M}(\mu)$ the subgroup consisting