A Note on the Zeros of H^pFunctions

NICHOLAS WEYLAND

§1. Introduction. Let n be a positive integer larger than 1 and let \mathbb{C}^n denote the complex vector space of all ordered n-tuples $z = (z_1, \dots, z_n)$ of complex numbers, with inner product

$$(1.1) \langle z, w \rangle = z_1 \bar{w}_1 + \cdots + z_n \bar{w}_n$$

and corresponding norm

$$|z| = \langle z, z \rangle^{1/2}.$$

The unit ball B is the set of $z \in \mathbb{C}^n$ with |z| < 1, and its boundary is the unit sphere S. There is a unique rotation invariant Borel measure σ on S with $\sigma(S) = 1$.

Following Rudin [4], let ϕ denote a nonconstant, nonnegative, nondecreasing, convex functions defined on $(-\infty, \infty)$. Define $H_{\phi}(B)$ to be the class of holomorphic functions f on B that satisfy the growth condition

(1.3)
$$\sup_{0 < r < 1} \int_{S} \phi(\log|f(rw)|) d\sigma(w) < \infty.$$

For example, if $\phi(t) = \max(0, t)$, then $H_{\phi}(B)$ is usually called the Nevanlinna class N(B). If $0 and <math>\phi(t) = \exp(pt)$, then $H_{\phi}(B)$ is the Hardy class $H^{p}(B)$. Let $H^{\infty}(B)$ be the set of all bounded holomorphic functions on B. Then for 0 we have

$$(1.4) H^{\infty}(B) \subset H^{q}(B) \subset H^{p}(B) \subset N(B).$$

We now give a necessary condition on a zero set to be the zero set of a function in $H_{\phi}(B)$.

§2. A necessary condition. Let D denote the unit disc in \mathbb{C} . For every $a \in S$ and every holomorphic function f on B define f_a , a holomorphic function on D, by

$$(2.1) f_a(u) = f(ua), for all u \in D.$$

Assume that $f(0) \neq 0$. Then for $0 < r \leq 1$ define

(2.2)
$$n_t(r; a) =$$
the number of zeros, counting multiplicity,

of
$$f_a$$
 in $\{u \in D: |u| < r\}$.