On the Structure of Certain $H^2(\mu)$ Spaces

THOMAS KRIETE

Let μ be a finite Borel measure with compact support in the complex plane, and denote by $H^2(\mu)$ the closure in $L^2(\mu)$ of the complex polynomials. For seemingly simple choices of μ , $H^2(\mu)$ can be quite mysterious. In this paper we investigate the structure of $H^2(\mu)$ for a particular class of measures μ supported on the closed unit disk $\bar{D} = \{z : |z| \le 1\}$.

Let ν denote the part of μ carried by the open disk D and suppose w $d\sigma + \mu_s$ is the Lebesgue decomposition of the part of μ carried by the unit circle ∂D ; here $d\sigma = (2\pi)^{-1}d\theta$ is normalized Lebesgue measure, $0 \le w$ is in $L^1(\sigma)$ and $\mu_s \perp \sigma$. Since $L^2(\mu_s)$ is always a direct summand of $H^2(\mu)$ [4, p. 28], we may assume that $\mu_s = 0$ and $\mu = \nu + w \ d\sigma$. We study conditions under which

(1)
$$H^2(\mu) = H^2(\nu) \oplus L^2(w \ d\sigma),$$

in which case we say that $H^2(\mu)$ splits. This will happen if and only if the characteristic function of ∂D lies in $H^2(\mu)$. Of course, the precise meaning of (1) is that the natural isometry

$$f \rightarrow \chi_D f \oplus \chi_{\partial D} f$$

of $H^2(\mu)$ into $H^2(\nu) \oplus L^2(w \ d\sigma)$ is actually onto, χ_E being the characteristic function of a set E.

We consider mainly the case in which ν is circularly symmetric: $d\nu = dm(r)d\theta$, or more precisely,

$$\int f \, d\nu = \int_0^{2\pi} \int f(re^{i\theta}) dm(r) \, d\theta$$

for some Borel measure m on [0,1). Then $H^2(\nu)$ has a simple structure as a space of analytic functions and (1) presents rather clearcut difficulties. This problem seems to have been first considered by E. M. Kegejan [9, 10] who obtained some conditions necessary and some sufficient for splitting when $d\nu = rdrd\theta$ (area measure on D) and $w = \chi_E$ with E a subset of ∂D . S. V. Hruščëv gave a complete solution [8] in this setting with $w = \chi_E$, $d\nu = dm(r) d\theta$ and m "slowly decaying" near r = 1. Meanwhile, W. Hastings [6] constructed an example showing that $H^2(\mu)$ can split when w is strictly positive and dm(r) = G(r)rdr, G(r) > 0 on [0,1). Subsequently, A. L. Vol'berg showed that