L^p-Densities and Boundary Behaviors of Green Potentials

JANG-MEI G. WU

1. Introduction. Let u be a Green potential in the upper half space $H \equiv \{x \in \mathbb{R}^n : x_n > 0\} \ (n \ge 2)$ given by a mass distribution μ , that is

$$u(x) = \int_{H} G(x, y) d\mu(y),$$

where G is the Green function on H. We assume without further comment that $u \neq +\infty$, which is equivalent to

$$(1.1) \qquad \int_{H} \frac{y_n}{1+|y|^n} d\mu(y) < \infty.$$

It is well known that u has vertical limit $(x_n \to 0^+)$ zero almost everywhere on $P = \{x: x_n = 0\}$ but u need not have nontangential limit at any point on P even if μ is absolutely continuous with respect to the Lebesgue measure (see [9], [11] and [13], the example in [13] needs to be modified).

In [2], Brelot introduced the concept of a "fine-limit" and in [10, Theorem 21], Naim proved that u has fine-limit zero almost everywhere on P. Combining this with results of Deny [5] and Lelong-Ferrand [8] on fine-limit and capacities, we easily conclude the following:

Theorem A. At almost every $a \in P$, u has limit zero along all rays in H to a except a collection of rays which meet $\{x: x_n = 1\}$ on a set of (n-2)-capacity zero $(n \ge 3)$ or of logarithmic capacity zero (n = 2).

Suppose μ is given by a density function λ ; an L^p -condition on λ guaranteeing the almost-everywhere existence of the non-tangential limit was given by Arsove and Huber [1]:

Theorem B. Let $D = \{x \in H: |x| < 1\}$ and p > n/2. Suppose $d\mu(y) = \lambda(y)dy$ and λ satisfies

$$\int_D \lambda^p(y) y_n^{2p-1} dy < \infty.$$