Possible Structures for the Set of Cyclic Vectors

DOMINGO A. HERRERO

Let T be a cyclic operator acting on a complex separable infinite dimensional Banach space \mathcal{X} , and let $\mathcal{C}(T)$ and $\mathcal{N}(T)$ denote the set of all cyclic vectors of T and its complement in \mathcal{X} , respectively. $\mathcal{C}(T)$ has nonempty interior if and only if it is open; if $\mathcal{C}(T)$ is closed in $\mathcal{X}\setminus\{0\}$, then either $\mathcal{C}(T)=\mathcal{X}\setminus\{0\}$ or $\mathcal{C}(T)$ is nowhere dense. Several conditions are found to be equivalent to 1) $\mathcal{N}(T)$ has nonempty interior; among them 2) The point spectrum of T^* has nonempty interior, 3) T^* does not have the single-valued extension property, 4) There exists a bounded linear mapping $X: \mathcal{X} \to \mathcal{A}(\Omega) = \{f: f \text{ is continuous on } \Omega^- \text{ and analytic on } \Omega \}$ (sup norm topology) with a dense range, where Ω is a Jordan domain contained in the spectrum of T, such that $XT = M_z X$ ($M_z = \text{multiplication}$ by z). Similar results hold for analytically cyclic operators.

1. Introduction. Let $\mathcal{L}(\mathcal{X})$ denote the algebra of all (bounded linear) operators acting on the complex Banach space \mathcal{X} . Given $T \in \mathcal{L}(\mathcal{X})$, we shall denote by $\mathcal{A}(T)$, $\mathcal{A}^a(T)$ and $\mathcal{A}'(T)$ the weak closure of the polynomials in T, the weak closure of the rational functions in T poles outside the spectrum $\sigma(T)$ of T (i.e., the "analytic algebra" of T [17]) and the commutant of T, respectively.

Given a (weakly closed, identity containing) subalgebra \mathcal{A} of $\mathcal{L}(\mathcal{X})$, the *multiplicity* (strict multiplicity, respectively) of \mathcal{A} is defined by

$$\mu(\mathcal{A}) = \inf\{ \mathfrak{C}(\Gamma) : \mathcal{X} = \bigvee [Ax : A \in \mathcal{A}, x \in \Gamma] \}$$
$$(\bar{\mu}(\mathcal{A}) = \inf\{ \mathfrak{C}(\Gamma) : \mathcal{X} = \text{linear span}[Ax : A \in \mathcal{A}, x \in \Gamma] \},$$

respectively), where \bigvee denotes "the closed linear span of".

Throughout Sections 2 and 3, T will always denote a cyclic operator, i.e., an operator $T \in \mathcal{L}(\mathcal{X})$ such that $\mathcal{A}(T)$ has multiplicity 1; this condition is clearly equivalent to $\mathcal{X} = \bigvee_{k \geq 0} T^k y$, or $\mathcal{X} = [\mathcal{A}(T)y]^-$ (where the upper bar denotes norm-closure), for some vector y. In this case, y is called a cyclic vector for T (or, for $\mathcal{A}(T)$). If \mathcal{X} is actually equal to $\mathcal{A}(T)y$, then T is called a strictly cyclic operator and y is a strictly cyclic vector for T [20]. Similarly, $A \in \mathcal{L}(\mathcal{X})$ is called analytically cyclic (analytically strictly cyclic, respectively) if $\mathcal{X} = [\mathcal{A}^a(T)y]^-$ (\mathcal{X})