Equivariant Immersion of Flag Manifolds

HENRY GLOVER & WILLIAM HOMER

Introduction. In this paper we give applications of Theorem 0.5 of [GHM] (see Section 3 of this paper). The spaces we consider are real flag manifolds $G_{n_1, \ldots, n_k} = 0/H$, where $0 = 0(n_1 + \cdots + n_k)$ and $H = 0(n_1) \times \cdots \times 0(n_k)$. There are many canonical embeddings of these manifolds in one another: G_{n_1, \ldots, n_k} embeds in G_{p_1, \ldots, p_ℓ} if there is a partition $\{1, \cdots, k\} = S_1 \cup \cdots \cup S_\ell$ with

$$p_i \geq \sum_{j \in S_i} n_j.$$

In Section 1 we show that any cyclic group of odd order acts freely on G_{n_1}, \ldots, n_k if at least two n_i 's are odd.

Our main results follow:

Theorem 0.1. If

- (i) G_{n_1, \ldots, n_k} immerses smoothly in $G_{p_1, \ldots, p_{\ell'}}$
- (ii) all p_i are odd,
- (iii) the codimension $q = \sum_{i \le j} p_i p_j \sum_{s \le t} n_s n_t$ is odd, and

(iv)
$$q \ge \left[(1/2) \sum_{s < t} n_s n_t \right] + 1,$$

then there exists an immersion $G_{n_1, \ldots, n_k}/G \subseteq G_{p_1, \ldots, p_\ell}$ for any smooth free action of a group G of odd order.

Corollary 0.2. If $n_1, \dots, n_k, p_1, \dots, p_\ell$ are as above then there exists an equivariant immersion $G_{n_1, \dots, n_k} \in G_{p_1, \dots, p_\ell}$ for any smooth free actions of a group G of odd order.

Remark 1. It requires some effort to find numbers giving the best possible results in Theorem 0.1 and Corollary 0.2. Such an example is $G_{1,1,1,3} \in G_{1,1,9}$, $G_{1,2,5} \in G_{3,9}$ is close.

Remark 2. Our results can be generalized to complex and quaternionic flag manifolds.